
C++ User Group Aachen

Multithreading in C++11

Fabian Kantereit
Geschäftsbereich Produktion
fabian.kantereit@inform-software.com

Content

• Threading Basics
• Thread Synchronization
• Atomics
• Futures / Promises
• Exception Handling

Threading Basics (1)

<thread> library

 std::thread → Thread object

 std::thread::hardware_concurrency() [static] → Number of supported hardware
threads

 Member Functions:
 joinable() → can the thread be joined (active thread)

 get_id() → thread id
 join() → joins the thread
 detach() → executes the thread independently from the local handle,

resources will be freed on thread termination

Note: Threads can be moved and swapped, but not copied / assigned!

File: 01_basic_threads/basic_threads.cpp

Threading Basics (2)

Passing arguments to threads:

- arguments can be passed as additional parameters

- references have to be wrapped with std::ref

- avoid passing local references to threads, that might
go out of scope

File: 02_passing_arguments/passing_arguments.cpp

Threading Basics (3)

namespace this_thread:

 std::this_thread::get_id() → returns the id of the current thread

 std::this_thread::sleep_for(std::chrono::duration) → thread sleeps for the
 duration

Einmaliger Methodenaufruf:

<mutex> library

 once_flag

 call_once → will call method exactly once

Storage specifier:

 thread_local → variable is allocated for each thread

File: 03_basic_threads/additional_concepts.cpp

Thread Synchronization (Mutex)

<mutex> library

Mutex types:
std::mutex → standard mutex

std::timed_mutex → allows to specify a locking timeout
std::recursive_mutex → allows recursive locking

std::recursive_timed_mutex → combines the above
std::shared_timed_mutex → will be introduced with C++14

Mutex locking:
std::mutex::lock() → locks the mutex, waits until it is available

std::mutex::try_lock() → tries to lock the mutex without blocking
std::mutex::unlock() → unlocks the mutex

std::timed_mutex::try_lock_for(duration) → try to lock the mutex for the specified amount of
time

Note: Mutexes are NOT exception-safe and should only be used in combination with a lock

File: 04_thread_synchronization/threadsynchro.cpp

Thread Synchronization (Lock)

<mutex> library

Available Locks:

std::lock_guard<mutex_type> → scope-based locking

std::unique_lock<mutex_type> → movable lock, can be unlocked manually

std::shared_lock<mutex_type> → moveable and shareable lock (C++14)

Why use locks?

Exception-safety, preventing deadlock: Locks unlock on destruction

Lock Operations:

lock_guard → locks on creation, unlocks on destruction (RAII Pattern)

unique_lock → locks on creation, unlocks on destruction

unique_lock::lock() → manually lock the underlying mutex

unique_lock::unlock() → manually unlock the underlying mutex

Also available: try_lock, try_lock_for, try_lock_until

File: 06_locks/locks.cpp

Thread Synchronization (Condition Variables):

<condition_variable> library

std::condition_variable → provides inter-thread signaling, associated with a unique_lock

std::condiition_variable_any → works with all locks

Mechanism: Locks are unlocked on wait() call and reacquired, when notify_one is called

condition_variable::notify_one() → notifies one thread to continue

condition_variable::notify_all() → resume all waiting threads

condition_variable::wait(Lockable&,Predicate) → waits for lockable, loops until Predicate

is fulfilled

Also available: wait_for(), wait_until()

Note: wait can be used without a predicate, but using one prevents spurious wakeups

File: 07_condition_variable/07_condition_variable.cpp

Avoiding deadlocks:

lock(m_a)

lock(m_b)

lock(m_b)

lock(m_a)

!DEADLOCK!

Solutions:
 Keep it simple, avoid synchronization points!

 std::lock(Lockable&,…) → locks all mutexes simultanously
 hierarchical locking → assign level to every lock and enforce locking order

File: 08_deadlock/08_deadlock.cpp

Threading Concepts (Singleton):

Task:
Implement a thread-safe and exception- safe singleton

Solution:
class A {

 public:

 static A &get_instance() {

 static A instance;

 return instance;

 }

};

File: 09_singleton/singleton.cpp

Atomic Types:

• std::atomic<type>
• thread-safe types, no race conditions
• read-modify-write is not interrupted
• Lock-free, if the platform supports atomic

types
• Generally faster than locking

File: 10_atomic_operations/atomic_operations.cpp

Atomic Operations:

Available Operations:
- load/store
- fetch_add/sub/and/or/xor
- exchange
- compare_exchange_weak/strong

atomic_flag:

 - test_and_set/clear

File: 10_atomic_operations/atomic_operations.cpp

Atomic fetch operations:

old_val = read atomic_val

Modify atomic_val

Write atomic_val

Return old_val

File: 10_atomic_operations/atomic_operations.cpp

Threading Concepts(atomic spinlock):

- atomic_flag is used as a mutex

void lock() {

while(flag.test_and_set());

 }

void unlock() {

flag.clear();

}

- further improvement: use RAII pattern lock

Futures:

What are Futures?
- result of asynchronous operation
- Contains value or exception
- can only be retrieved once
- associated with std::async,

std::packaged_task or std::promise

File: 11_async/async.cpp

std::async

What is the purpose of std::async?
- Asynchronous start of function,

packaged_task, lambda expression or
std::bind

- stores return value in future
- stores exception in future
- manages the threads

File: 11_async/async.cpp

Promise:

What is a promise?
• Stores a value for asynchronous retrieval
• useful if a thread computes multiple

values
• value/exception must be set manually
• value is available via get_future()

File: 11_async/async.cpp

Exceptions thrown by Futures and Promises

future_error:
- broken_promise
- future_already_retrieved
- promise_already_satisfied

- no_state

File: 11_async/async.cpp

Exception Handling:

Strategies:
- global try/catch(…) in every thread

and catch/rethrow with exception_ptr
- store exceptions in promise
- let std::async/packaged_task store

exceptions

File: 12_exception_handling/exception_handling.cpp

Sources

- C++ Concurrency in Action: Practical
Multithreading (Anthony Williams)

- http://www.cppreference.com

http://www.cppreference.com/

	Slide 1
	Content
	Threading Basics (1)
	Slide 4
	Threading Basics (2)
	Thread Synchronization (Mutex)
	Thread Synchronization (Lock)
	Thread Synchronization (Condition Variables):
	Avoiding deadlocks:
	Threading Concepts (Singleton):
	Atomic Types:
	Atomic Operations:
	Atomic fetch operations:
	Threading Concepts(atomic spinlock):
	Futures:
	std::async
	Promise:
	Exceptions thrown by Futures and Promises
	Exception Handling:
	Quellen

