
z

Google Mock

C++ User Group Aachen

Andreas Brack

z

Preface

▪ Previously own project, now absorbed into Google Test

▪ https://github.com/google/googletest

▪ License: BSD 3

▪ Linux: installable via package manager

▪ Only header & sources, no ready to use libraries

https://github.com/google/googletest

z

Mock?

▪ A Mock object replaces the real object (in tests)

▪ Reasons for Mocking

▪ Indeterministic data (Time, Temperature, etc)

▪ Error cases are difficult to be produced (TCP-Errors)

▪ Slow or complex operations

▪ Unavailability (Other components, Interfaces, User Input)

▪ Behavior of the real class (deleting something)

z

Limitations

▪ Only member functions of classes can be mocked

▪ Build a class around free functions

▪ Design of the program / other classes has to support

exchangeability of the class, which shall be mocked

▪ 2 Ways of getting mocks into a program

▪ Inheritance (Interface)

▪ Only virtual functions can be mocked

▪ Derived class from real interface or pure virtual interface

▪ Templates

z

Google Mock

▪ Helps defining mocks

▪ Main Features:

▪ Call arguments check

▪ Call times and Sequence check

▪ Sideeffects and return value can be specified

▪ Warn unexpected calls (default), StrictMock -> error,

NiceMock -> default constructed return value

▪ Uses Macros for defining mocked functions

▪ Offers scripting for support

z

Using Google Mock

▪ Create header only class

▪ All functions to be mocked: Use macros to define Mock

▪ MOCK_METHOD2(foo, int(char, bool)) ; # Number of args, name, signature

▪ Inside the Test: Define Behaviour

EXPECT_CALL(mock_object, method(matchers))

.With(multi_argument_matcher)? .Times(cardinality) ?

.InSequence(sequences) * .After(expectations) *

.WillOnce(action) * .WillRepeatedly(action)?

.RetiresOnSaturation(); ?

z

Example

▪ Application shall

▪ Request User data (user input): Mocked

▪ Do some operation (Dupilcate Vales): Tested

▪ Store in some database: Mocked

z

Additional

▪ Many matchers are already defined

▪ Pointers, Strings, containers, etc

▪ Extendable Matchers, Cardinalities, etc

▪ Template classes are mockable, MOCK_* -> MOCK_*_T

▪ Template member functions are not mockable

▪ Workaround: Specialize for tested types and call mockable function

inside specialization

z

Questions

