Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 1/40

Vorlesung

Objektorientiertes
Programmieren
in
C++

Teil 7 - WS 2025/26

Detlef Wilkening
www.wilkening-online.de
© 2025

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1

Seite 2/40

14 Q= T T= o
141 MOtVALION.....ccoieeeeeeeeeeeeeeeeee
14.2  Klassen-Definition ...
14.3  ZugriffSbereiChe.........c.coooeiv i
14.4 Klassen sind benutzerdefinierte Typen .........cccoooeviiiiiiiiiiie e,
14.5 ODbJekt-Orienti€rung .........cceeeeiiiiiie e
T4.6  ErWEIEIUNG......oeiiiiiieie e s
14.7  ODbJeKt-ZUStand ............cooiiiiie s
14.8  KONSLIUKLOIEN.......cooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
14.9 DeStrUKIOreN ...
14.10 Const-Element-Funktionen .............cccccceiiiiii e
A AT IS e
14.12 Klassen verwenden Klassen ...
1413  Member-Initialisierungs-Listen ...........cccccceeeei i,
14.14 DeKIarationen ........ccooooeeeiiiiiiiei
14.15 Klassen-Elemente ...
1416 FHENG. ...
1417  Klassenbezogene TYPEN .......eeii i

14 Klassen

14.1 Motivation

In der Praxis bendtigt man haufig mehrere Variablen, die logisch zusammenhangen, um zu

beschreiben, was man darstellen mochte.

Beispiele:
e Bruch
—int Nenner
—int Zahler
e Complexe Zahl
— double Realteil
— double Imaginarteil
e Datum
—int Jahr
—int Monat
—int Tag
e Person
— string Vorname
— string Nachname
— string Stral3e
— string Ort
— vector<string> Telefonnummern

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 3/40

Hierfur kennen alle ernstzunehmenden Programmiersprachen irgendwelche Sprachmittel.
Sie werden z.B. Strukturen, Records oder Verbundtypen genannt. Bei ihnen blindelt man
bekannte Typen zu einem neuen Typ. Variablen diese neuen Typs enthalten alle inneren

Teile, und es kann einfach auf sie zugegriffen werden.

// Achtung - dies ist zwar korrekter C++ Code, aber sowas machen wir nicht.
// Der direkte Zugriff auf die Attribute ist boese - wir werden gleich sehen,
// wie das besser geht.

struct date

{
int year;
int month;
int day;

i

int main ()

{
date d;
d.year = 2004;
d.month = 11;
d.day = 29;

d.month = 56;

}

In der Praxis haben Strukturen mehrere Probleme:

o Haufig sind die Attribute einer Struktur voneinander abhangig. Da jeder auf die Attribute
zugreifen kann, ist die Gefahr grol}, dass die Attribute unglltige bzw. inkonsistente Werte
bekommen. Z.B. sind die erlaubten Tag-Werte in einer Datums-Struktur von Monat und
Jahr abhangig.

e Es kann uninitialisierte Strukturen geben, da entweder elementare Datentypen nicht
initialisiert werden und zufallige Startwerte haben, oder die Default-Werte der Attribute
nicht zusammenpassen.

e Strukturen werden maoglicherweise nicht sauber abgebaut - geben z.B. Ressourcen wie
Speicher oder Dateien nicht frei.

e Es kann Probleme beim Kopieren oder Zuweisen von Strukturen geben.

e Strukturen alleine (rein die Daten) sind haufig wertlos. Erst durch sie verarbeitende
Funktionen werden sie echt leistungsfahig. Z.B. eine Strukur fur Datums-Objekte ist fur
sich nicht besonders hilfreich, sondern wird es erst dann wenn man damit z.B. rechnen
kann.

e Freie Funktionen sind hier nicht die beste Wahl fur verarbeitende Funktionen auf
Strukturen - z.B. wegen Zugriff, Zuordnung, u.a.

¢ Die interne Reprasentation der Daten laf3t sich nicht so einfach andern — z.B. complexe
Zahlen mit Winkel phi und Radius r statt Real- und Imaginarteil, wenn jeder die
Reprasentation kennt und nutzt.

Darum hat man in der Objektorientierung das Sprachmittel von Klassen eingefligt, das neben
der Adressierung dieser Probleme auch noch viele weitere Mdglichkeiten enthalt, z.B.
Vererbung und Polymorphie.

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 4/40

14.2 Klassen-Definition

Eine Klasse ist in C++ ein benutzerdefinierter Typ, und daher gilt fiir sie alles, was wir
fiir Typen kennengelernt haben.

Eine Klasse muss in C++ immer definiert werden, bevor ihre Elemente (Klassen-Variablen,
Element-Funktionen, Konstruktoren,...) implementiert werden kénnen, oder die Klasse
benutzt werden kann.

Erstmal kann eine Klasse fur uns nur zwei Dinge enthalten:
e Funktionen, sogenannte Element-Funktionen, oder auch Memberfunctions
Im folgenden Bsp. sind das die beiden Element-Funktionen init und print.
Achtung - dies sind - wie man sofort sieht - ganz normale Funktions-Deklarationen.

e und Daten, sogenannte Element-Variablen, Attribute, oder Properties
Im Bsp. sind das die drei ,int Attribute flr Jahr, Monat und Tag.

class date

{

public:
void init(int, int, int);
void print ();

private:
int day ;
int month ;
int year ;

}i

14.2.1 Attribute

Die Attribute eine Klasse sind ganz normale Variablen, die einfach zu einem neuen Typ
zusammengefasst werden.

Fir die Namen von Attributen findet sich haufig eine der folgenden Konventionen:
e Prafix ,m_*, klein beginnend und kapitalisiert geschrieben.
Bsp.: ,m_year®, ,m_networkPort*
e Prafix ,m“ grofd beginnend und kapitalisiert geschrieben.
Bsp.: ,mYear, ,mNetworkPort*
¢ klein beginnend, kapitalisiert geschrieben, und mit Postfix ,_*“.
Bsp.: ,year_*, ,networkPort_*
e klein beginnend, mit,_“ getrennt, und mit Postfix ,_*“.

Bsp.: ,year_*, ,network_port_*“

Hinweis — keine dieser Konventionen ist von der Sprache her vorgeschrieben, oder auch nur
empfohlen. In der Praxis hat es sich aber bewahrt, die Attribute im Namen als Attribute zu
kennzeichnen, da sie eine besondere Rolle spielen. Und die obigen vier Konventionen finden
sich halt haufig hierflr wieder - das Skript folgt der vierten Konvention. Z.B. Boost, Google
oder Geosoft's verwenden den Postfix ,_“, Microsoft verwendet den Prafix ,m_* mit
Kapitalisierung (z.B. zu finden in der MFC), oder Possibility das Prafix ,m*.

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 5/40

14.2.2 Element-Funktionen

Element-Funktionen sind im Prinzip ganz normale Funktionen. Es gelten daher alle
bekannten Features z.B. bzgl. Deklaration, Uberladen, Default-Argumente, Parameterliste,
usw. Und im Beispiel sehen die Element-Funktions-Deklarationen ja auch wie ganz normale
Deklarationen aus - und sind es auch.

14.2.3 Zugriffsspezifizierer

Mit den SchlUsselwortern public und private werden Zugriffsrechte vergeben. Auf alle
Elemente (Attribute, Funktionen,...)

¢ im public-Bereich kann von ausserhalb und innerhalb der Klasse,

e im private-Bereich kann nur von innerhalb der Klasse

zugegriffen werden.

14.2.4 Element-Funktions-Definitionen

Die Element-Funktionen einer Klasse mussen - als normale Funktionen - natirlich definiert
werden. Der offensichtlichste Unterschied gegentuber der Definition von freien Funktionen ist
ein aufwandigerer Funktions-Name, da sich dieser aus Klassen-Name, Scope-Resolution-
Operator und dem eigentlichen Funktions-Namen zusammensetzt.

Syntax:
Ruckgabetyp Klassen-Name :: Funktionsname ( Parameterliste ) { Anweisungen }

// Achtung - die Definition der Klasse 'date' muss dem Compiler bekannt sein!
// Daher die Klassen-Definition muss vorher im Quelltext stehen.

void date::init(int d, int m, int y)

void date::print ()

{
std::cout << day << '.' << month << '.' << year ;

}

Element-Funktionen sind fest an eine Klasse und ihren Kontext gebunden. Von daher muss
die Klasse definiert worden sein, bevor eine Element-Funktion definiert werden kann, damit
der Kontext (der Aufbau der Klasse) bekannt ist.

Element-Funktion einer Klasse kénnen auf die private Attribute der Klasse zugegreifen, da
sie Teil der Klasse sind und damit auch Zugriff auf den private-Bereiche haben.

Element-Funktionen sind in den Kontext einer Klasse eingebunden, d.h. kdnnen sie direkt
Uber den Attribut-Namen ohne Klassenbezug auf die Attribute der Klasse zugreifen.

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 6/40

14.2.5 Klassen-Benutzung

Mit der Definition von ,date” ist ,date“ zu einem benutzerdefinierten Datentyp geworden.
Daher kénnen von ihm Objekte angelegt werden - Syntax: ,typ variablenname;*.

// Achtung - die Definition der Klasse 'date' muss dem Compiler bekannt sein!
// Achtung - die Element-Funktions Definitionen muessen fuer den Linker vorhanden sein!
int main ()
{
date di; // ein Datums-Objekt wird erzeugt
date d2, d3; // zwei Datums-Objekte werden erzeugt

dl.init (29, 11, 2004); // dl wird mit dem 29.11.2004 initialisiert
d2.init (10, 5, 1999); // d2 wird mit dem 10.05.1999 initialisiert
d3.init( 5, 1, 2005); // d3 wird mit dem 05.01.2005 initialisiert

dl.print () ; // => 29.11.2004
d2.print () ; // => 10.05.1999
d3.print () ; // => 05.01.2005

Auf die Objekt-Komponenten kann tUber das Objekt mit dem Punkt-Operator zugegriffen
werden - hier im Bsp. sieht man dies fir die Element-Funktionen ,init* und ,print®. Die
Element-Funktionen greifen hierbei auf die Daten des Objekts zu, mit dem sie aufgerufen
wurden, d. h. auf die Daten des aktuellen Objekts. Element-Funktionen haben immer
einen Objektbezug.

14.3 Zugriffsbereiche

Wie schon in angedeutet, werden mit den Zugriffsspezifizierern public und private die
Zugriffsrechte auf Klassen-Elemente vergeben.

Auf alle Elemente (Attribute, Funktionen,...)
e im public-Bereich kann von ausserhalb und innerhalb der Klasse,

e im private-Bereich kann nur von innerhalb der Klasse
zugegriffen werden.

Der Default-Bereich in der Klassen-Definiton ist private.
Ein Zugriffsbereich darf leer sein.

Die Zugriffsbereiche durfen mehrfach in beliebiger Reihenfolge vorkommen.

class A
{
void f1();
long 11;
public:
void £2();
long 12;
private:
void £3();
long 13;
private:
void f4();
long 14;
private:
public:

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 7/40

void £5();
long 15;

}i

int main ()

{
A a
a.fl(); // Compiler-Fehler -> kein Zugriff von aussen, da private
a.l1=7; // " > " " " ;O "
a.f2(); // okay, Zugriff von aussen erlaubt, da public
a.12=7; YV , " " " " , "
a.£3(); // Compiler-Fehler -> kein Zugriff von aussen, da private
a.l3=7; // " > " " " n "
a.fa(); // Compiler-Fehler -> kein Zugriff von aussen, da private
a.l4=7; // " > " " " " , " "
a.£5(); // okay, Zugriff von aussen erlaubt, da public
a.l15=7; /)" " " " " " "

}

Bezeichnungen

e Der public-Bereich wird oft als Interface bezeichnet, da er die Schnittstelle der Klasse
nach aussen darstellt.

o Der private-Bereich wird oft als Implementationsbereich bezeichnet, da er nur fir den
internen Gebrauch der Klasse zur Verfligung steht - der Implementierung.

Information Hiding

o Alle Attribute sollten private sein.

e Zugriff auf die Attribute nur liber Element-Funktionen.

Im Sinne einer sauberen und sicheren Programmierung sollten alle Attribute in den private-
Bereich einer Klasse liegen und alle Zugriffe Uber Element-Funktionen abgewickelt werden.

Die Zugriffsspezifizierer beziehen sich auf alle Symbole im zugehorigen Bereich, egal ob
Attribute, Element-Funktionen, Operatoren, Konstruktoren, Destruktoren, usw., und egal ob
normal, virtual, static oder inline.

Hinweis — neben public und private gibt es in C++ noch den Zugriffsberich protected, der
von seiner Wirkung zwischen den beiden liegt. Erst mit Vererbung bekommt er einen Sinn,
und wird auch erst dann vorgestellt.

Hinweis — bei der Anordnung der Zugriffsbereiche haben sich zwei Konventionen

eingeburgert:

e Konvention 1 nutzt aus, dass der Default-Bereich ,private” ist, d.h. beginnt direkt ohne
Zugriffsspezifizierer mit dem Private-Bereich, dann folgt der protected Bereich, und zum
Schlul? der public Bereich.

e Konvention 2 ordnet die Bereiche nach ihrer Wichtigkeit fir den Benutzer der Klasse. Da
dieser nur das Interface der Klasse, d.h. den public Bereich nutzen kann, kommt dieser
als erstes. Dann folgt der protected Bereich, der nur noch fir manche Benutzer
interessant ist. Und zum SchluB3 der private Bereich, da dieser nur fir den Entwickler der
Klasse selber wichtig ist.

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 8/40

Das Skript folgt hier der zweiten Konvention.

14.4 Klassen sind benutzerdefinierte Typen

Klassen sind benutzerdefinierte Typen, und verhalten sich wie wir von Typen erwarten:
1. Referenzen (auch const) auf Objekte sind maglich.

2. Kopieren und Zuweisen ist mdglich

3. Aufruf an Funktionen mit cbv (default) und cbr méglich.

void f cbv(date d) // call-by-value, d.h. Kopie wird angelegt
{
d.print(); // =>29.11.2004
d.init (24, 12, 2005);
d.print(); // => 24.12.2005
}
void f cbr(date& d) // call-by-reference
{
d.print(); // =>29.11.2004
d.init (24, 12, 2005);
d.print () ; // => 24.12.2005
}
int main ()
{
date d, d2;
d.init (29, 11, 2004);
d.print(); // =>29.11.2004
f cbv(d);
d.print(); // =>29.11.2004
f cbr(d);
d.print (); // => 24.12.2005
d2 = d;
d2.print () ; // => 24.12.2005
}

14.5 Objekt-Orientierung

Einer der Hauptgedanken der Objekt-Orientierung ist die Idee, abgeschlossene gekapselte
Einheiten programmieren und anbieten zu konnen, bei denen der Benutzer sich keine
Gedanken mehr uber das Innenleben machen muss, sondern einfach die Objekte Uber deren
Schnittstelle benutzt.

Wir haben solche Objekte schon kennen gelernt, z.B.:
e Streams

e Strings

e Container (vector, list, map, set,...)

e lteratoren

Diese Idee hat viele bestechende Vorteile:

e Information-Hiding

e Daten versteckt (gegenseitige Abhangigkeiten, unterschiedliche Reprasentationen,...)
¢ Klare Schnittstelle

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 9/40

14.6 Erweiterung

Wunsch — ein Datums Objekt soll mit dem aktuellen Datum initialisiert werden kénnen.

Lésung — z.B. zweite Element-Funktion ,init* ohne Parameter (d.h. Uberladen).

#include <ctime>

class date

{

public:
void init(); // Neue Funktion — Rest wie bisher
void init(int, int, int);
void print ();

private:
int day ;
int month ;
int year ;

}i

// Initialisiert das date-Objekt mit dem aktuellem Datum.
void date::init ()
{

std::time t timer = std::time(0);

std::tm* tblock = std::localtime (&timer) ;

day = tblock->tm mday;

month = tblock->tm mon+l;
year = tblock->tm year+1900;
}
date d;
d.init ();
d.print(); // Busgabe aktuelles Datum

Hinweis — man sollte in der Realitat die Element-Funktion vielleicht aussagekraftiger
,Set_to_now* oder ,today“ oder so nennen. Aber ich wollte dies auch gleich als Beispiel
nutzen, dass sich natlrlich auch Element-Funktionen Uberladen lassen.

14.7 Objekt-Zustand

Problem — es kann passieren, dass ein Datums-Objekt ein Datum reprasentiert, das es nicht
gibt, z. B. den 789.-2.0

Losung — um dies zu verhindern, bauen wir eine private Testfunktion ein, die nach jeder
Anderung des inneren Zustands aufgerufen wird, und diesen auf Korrektheit Gberprift. Im
Falle eines Problems wird eine Fehlermeldung ausgegeben und das Programm hart mit der
Funktion ,std::exit(int)* aus ,cstdlib“ beendet.

#include <iostream>
#include <cstdlib>
using namespace std;

class date

{

public:
void init();
void init(int, int, int);
void print ();

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 10/40

private:
void test(); // Neue Funktion - Rest wie bisher

int day ;
int month ;
int year ;

}i

void date::init(int d, int m, int y)
{
day = d;
month = m;
year = y;
test(); // Und spaeter auch an allen anderen relevanten Stellen

}

// Testet, ob das Datums Objekt okay ist, und beendet im Fehlerfall mit
// einer Meldung das Programm - die Implementierung ist dem Praktikum
// ueberlassen.
void date::test ()
{
if ( 2?2?)
{
cout << "Datums-Objekt ";
print () ;
cout << " ist nicht korrekt\n";
exit (1) ;

int main ()
{
date d;
d.init (29, 11, 2004); // okay
d.init (789, 1, 1999); // Programm-Abbruch

Ein wichtiger Grundsatz in C++ ist, dass ein Objekt immer einen sauberen wohldefinierten
Zustand haben sollte. Sobald Sie zulassen, dass ein Objekt einen unsauberen Objekt-
Zustand erhalten kann, stehen Problemen und Fehlern ,Haus und Hof* offen. Denn das
hiesse, dass vor jeder Benutzung eines Objekts sein Zustand abgefragt werden musste. Und
das ist einfach nicht praktikabel, wirde die Benutzung unnétig erschweren, und die
Akzeptanz untergraben. In der Praxis wirde die Klasse dann entweder nicht oder nur mit
einer ,es wird schon nicht schiefgehen“ Mentalitat benutzt werden. Treten dann fehlerhafte
Zustande auf, so vermehren sie sich im Programm bis irgendwann komische Effekte
auftreten. Wenn sie Glick haben, passiert nichts wildes, wenn sie aber Pech haben stehen
mittlerweile komplett falsche Daten in der Datenbank und sonst was. Das zweite schlimme
an der Situation ist, dass solche Fehler ja nicht sofort auffallen, sondern erst viel spater —
und dann wird die Fehlersuche oft sehr schwierig und mihsam.

Probleme sollten an der Wurzel bekampft werden, damit sie nicht wachsen kénnen, darum
gewahrleisten Sie, dass Objekte lhrer Klassen immer einen sauberen wohldefinierten
Zustand haben.

14.8 Konstruktoren

Wir haben gelernt, dass lokale Variablen einiger Typen bei der Definition rein zufallige
Startwerte bekommen — z.B. alle elementaren Datentype.. Dem gegenuber ist z.B. ein String
immer ein Leerstring, wenn er ohne Argumente erzeugt wird:

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 11/40

int main ()

{
int i; // zufaelliger Startwert
string s; // genau definiert -> Leerstring
cout << '""' << s "\" - " << i << "\n';

Dies gilt auch, wenn diese Typen in Klassen liegen, und ein Objekt der Klasse als lokale
Variable erzeugt wird:

class A

{

public:
int 1i;
string s;

}i

int main ()

{
A a; // a.s ist Leerstring, a.i ist zufaellig
cout << '""'" << ga.s << "\" - " K< a.i << "\n';

Da ein Objekt niemals einen instabilen Zustand haben sollte, ist dieses Verhalten schlecht.

Darum ist es moglich, ein Objekt direkt bei der Erstellung sauber zu initialisieren. Hierfur gibt

es in C++ spezielle Element-Funktionen, die Konstruktoren:

e Konstruktoren tragen immer den Namen der Klasse.

e Sie haben keinen Ruckgabewert, auch nicht ,void“.

e Wird ein Objekt erzeugt, so wird immer automatisch der entsprechende Konstruktor
aufgerufen — dies gilt ohne Ausnahme.

e Der entsprechende Konstruktor ergibt sich aus den Argumenten beim Aufruf — hier gelten
die normalen Funktions-Uberladen-Regeln.

#include <iostream>
using namespace std;

class A

{

public:
A(); // <= Deklaration Konstruktor (1
A(int); // <= Deklaration Konstruktor (2)
A (double) ; // <= Deklaration Konstruktor (3)
A(int, double); // <= Deklaration Konstruktor (4

void print ();

private:
int n_;
double d_;
}i

A::A() // <= Definition Konstruktor (1)

==

cout << "A::A () \n";

n = 0;
d = 0.0;
}
A::A(int n) // <= Definition Konstruktor (2)

cout << "A::A(int " << n << ")\n";

n_ = n;
d = 0.0;
}
A::A(double d) // <= Definition Konstruktor (3)

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 12/40

cout << "A::A (double " << d << ")\n";

n = 0;

d =d;
}
A::A(int n, double d) // <= Definition Konstruktor (4)
{

cout << "A::A(int " << n << ", double " << d << ")\n";

n =n;

d =d;

}

void A::print ()
{

cout << "=>n:" << n_ << " -d:" << d << '\n';
}
int main ()
{
A al; // <= Nutzung Konstruktor (1)
al.print () ; // => n:0 — d:0
A a2(4); // <= Nutzung Konstruktor (2)
a2.print () ; // => n:4 - d:0
A a3(2.7); // <= Nutzung Konstruktor (3)
a3.print () ; // => n:0 — d:2.7
A ad(6, 3.1); // <= Nutzung Konstruktor (4)
ad.print () ; // => n:6 — d:3.1
}
Ausgabe
A::A()
=> n:0 - d:0
A::A(int 4)
=> n:4 - d:0

A::A(double 2.7)

=> n:0 - d:2.7
A::A(int 6, double 3.1)
=> n:6 - d:3.1

Fir Konstruktoren gilt:

e Konstruktoren sollen das Objekt sauber konstruieren.

e Sie durfen Uberladen werden.

e Es durfen Default-Argumente benutzt werden.

e |hr vorzeitiges Ende kann mit return (ohne Ausdruck) erreicht werden.

e Bis auf ihren speziellen Verwendungszweck, ihrem fehlenden Rickgabetyp und der
fehlenden Adresse sind sie ganz normale Element-Funktionen.

Ubertragen auf unsere Klasse ,date” bedeutet dies, dass wir zwei Konstruktoren zur
Verfugung stellen sollten:
e Einen Konstruktor ohne Parameter flr das aktuelle Datum

¢ Einen Konstruktor mit drei Int-Parametern fiir die Ubergabe von Tag, Monat und Jahr.

class date

{

public:
date () ; // <= Deklaration Konstruktor (1
date(int, int, int); // <= Deklaration Konstruktor (2)

// Rest wie bisher
}i

date::date() // <= Definition Konstruktor (1

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 13/40

{
init ()

}

date::date(int d, int m, int y) // <= Definition Konstruktor (2)
{

init(d, m, y);
}

int main ()

{
date di; // <= Nutzung Konstruktor (1)
dl.print () ; // => <aktuelles Datum>
date d2(18, 10, 2001); // <= Nutzung Konstruktor (2)
d2.print () ; // => 18.10.2001

}

Im Rahmen unseres bisherigen Wissens kénnen wir also sagen, dass bei einer Objekt-
Erstellung erst Speicher bereitgestellt, und dann immer der Konstruktor aufgerufen wird, der
die Attribute des Objekts sauber initialisiert (sauber initialisierung sollte!).

Es gibt mehrere spezielle Konstruktoren bzw. Konstruktor-Familien, die wir in den nachsten
Kapiteln naher besprechen werden:

e Standard-Konstruktor — siehe Kapitel 14.8.1

o Konvertierungs-Konstruktoren — siehe Kapitel 14.8.2

o Kopier-Konstruktor(en) — siehe Kapitel 14.8.4

¢ Move-Konstruktor — siehe Kapitel 14.8.5

e Sequenz-Konstruktor — siehe Kapitel 14.8.6

Hinweis — einige der spezielle Konstruktoren (Standard-, Kopier- und Move-Konstruktor)
werden unter gewissen Umstanden automatisch vom Compiler erzeugt — siehe die folgenden
Kapitel 14.8.1 bis 14.8.5. Man nennt diese automatisch erzeugten Konstruktoren ,implizite
Konstruktoren® oder auch ,automatische Konstruktoren® (,impliziter Standard-Konstruktor®,
~impliziter Kopier-Konstruktor, ...). Alle diese Konstruktoren kann man auch selber
schreiben. In diesem Fall nennt man sie ,explizite Konstruktoren®.

14.8.1 Standard-Konstruktor

Bislang konnte die ,date“-Klasse genutzt werden, obwohl sie keinen Konstruktor enthielt.
Dabei hiel es aber eben doch, dass bei jeder Objekterzeugung der entsprechende
Konstruktor aufgerufen wird. Wie funktioniert das denn, wo die Klasse ,date” doch gar keinen
Konstruktor hatte?

Dies war kein Problem, denn: Wenn Sie in der Klassen-Defintion keinen einzigen
Konstruktor deklarieren, erzeugt der Compiler automatisch einen public Standard-
Konstruktor, der fur alle Datenelemente (inkl. Basis-Klassen) wiederum deren Standard-
Konstruktoren aufruft. Dieser Konstruktor heif3t:

e Impliziter Standard-Konstruktor, oder

e Automatischer Standard-Konstruktor

| class a // Klasse hat keinen user-deklarierten Konstruktor

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 14/40

{ // => Compiler erzeugt impliziten Standard-Konstruktor
public:
void fct () ;
bi
int main ()
{
A a; // okay — impliziter Standard-Konstruktor wird genutzt
a.fct ()
}

Deklarieren Sie dagegen mindestens einen beliebigen Konstruktor in der Klassen-
Definition, so erzeugt der Compiler keinen Standard-Konstruktor. Bendtigen Sie ihn
trotzdem, so missen Sie ihn dann selber erzeugen.

class A

{

public:
A(int); // User-deklarierte Konstruktor => kein impliziter Standard-Konstruktor
void fect () ;

i

int main ()

{
A al(l); // Okay
al.fct();

A a2; // Compiler-Fehler -> kein passender Konstruktor (Standard-Konstruktor)
az2.fct();

class A

{

public:
A(); // Expliziter Standard-Konstruktor
A(int); // User-deklarierte Konstruktor => kein impliziter Standard-Konstruktor
void fct () ;

}i

int main ()

{
A al(l); // Okay
al.fct();

A a2; // Jetzt auch okay, nutzt den expliziten Standard-Konstruktor
az.fct();

Hinweis — selbst wenn diese Beispiele den oder die Konstruktor(en) nicht definiert haben —
es sollte lhnen klar sein, dass die Konstruktor-Definitionen natirlich fir ein komplettes
Programm notwendig sind.

Wenn Sie einen Standard-Konstruktor benétigen, der Compiler aber keinen fir Sie erzeugt
(da es mindestens einen user-deklarierten Konstruktor gibt), so missen Sie ihn selbst
deklarieren und definieren (s.0.). Wenn Ihnen der implizite Standard-Konstruktor ausgereicht
hatte (daher der, den der Compiler eigentlich fur Sie erzeugt hatte), dann gibt es in C++ eine
einfache Losung: Sie deklarieren den Standard-Konstruktor mit ,, = default” — dann erzeugt
der Compiler fir Sie explizit den impliziten Standard-Konstruktor:

class A

{

public:
A() = default; // Compiler erzeugt Standard-Konstruktor => keine Impl. notwendig
A(int); // Ihr eigener Konstruktor - Implementierung notwendig
void fect () ;

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 15/40

}i

A::A(int) // Eigene Implementierung vom Int-Konstruktor

{

}

int main ()

{
A al(l); // okay
al.fct();
A a2; // okay
a2.fct();

}

Umgekehrt kann man in C++ den impliziten Standard-Konstruktor auch verbieten, so dal® der
Compiler ihn niemals erzeugt. Dazu muss die Deklaration des Standard-Konstruktors mit
,—delete” abgeschlossen werden:

class A
{
public:
A() = delete; // Compiler verbietet den Standard-Konstruktor
void fect () ;
}i
int main ()
{
A a; // Compiler-Fehler - kein Standard-Konstruktor vorhanden
} // Von "A" kann kein Objekt erzeugt werden

Hinweis — das explizite Verbieten des Standard-Konstruktors ist eher ein Spezialfall. In der
Praxis findet man das Verbieten von Konstruktoren mit ,=delete“ eher bei den Kopier- und
Move-Konstruktoren.

In C++ ist der Standard-Konstruktor nicht Uber die leere Parameterliste, sondern tiber den
Aufruf definiert: Der Konstruktor, der ohne Argumente aufgerufen werden kann, ist der
Standard-Konstruktor oder auch Default-Konstruktor.

Ein Standard-Konstruktor ist also:
e entweder ein Konstruktor onne Parameter, bzw.
e einer, bei dem samtliche Parameter mit Default-Argumenten belegt sind.

class A

{

public:
A(int = 42); // Dies ist auch ein Standard-Konstruktor
void fct () ;

}i

A::A(int n)
{
cout << "A (" << n << ")\n";

}

int main ()

{
A al; // Aufruf des Standard-Konstruktors mit "42" - Default-Argument
al.fct();
A a2(6); // Aufruf des Standard-Konstruktors mit "6"
a2.fct();

}

| Ausgabe

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 16 /40

Hinweis — in C++ ist der Standard-Konstruktor ein relativ wichtiger Konstruktor. Immer wenn
Objekte erzeugt werden, ohne das der Benutzer einen speziellen Konstruktor angibt, dann
werden sie automatisch mit dem Standard-Konstruktor erzeugt. Da in C++ haufig wertbasiert
programmiert wird, passiert es relativ haufig, dass Objekte im Hintergrund einfach so erzeugt
werden. Fast immer kann man die Erzeugung steuern — defaultmafig wird aber immer der
Standard-Konstruktor genommen.

Achtung — es gibt in C++ in Verbindung mit dem Standard-Konstruktor eine kleine Falle:
Wollen Sie ein Objekt mit dem Standard-Konstruktor initialisieren, so dirfen Sie keine runden
Klammern verwenden.

class A

{

public:
A();
A(int);
void fct () ;

}i

int main ()
{

A al(6);

A a2(); // Hier liegt der eigentliche Fehler, die Zeile ist aber syntaktisch okay

al.fct();
a2.fct(); // Compiler-Fehler mit komischer Fehlermeldung vom Compiler

}

Losung — ,A a2()“ ist keine Objektdefinition, sondern eine Funktions-Deklaration der
Funktion ,a2“ die keine Parameter erwartet und ein A-Objekt per Kopie zurtickgibt.

Tipp — der Fehler tritt nicht bei der falschen Objektdefinition auf, da diese eine syntaktisch
korrekte Funktions-Deklaration ist, sondern erst bei der Verwendung des vermeintlichen
Objekts. Schauen Sie sich bei einem solch unerklarlichen Fehler also ruhig mal lhre Objekt-
Definition an.

14.8.2 Temporare Objekte

Wir kdnnen in C++ Konstruktoren explizit aufrufen und damit temporare Objekte erzeugen.
Temporare Objekte sind Objekte, die keinen Namen haben (d.h. z.B. keine Variablen sind)
und am Ende der Anweisung automatisch wieder zerstort werden.

Nehmen wir als Beispiel eine Klasse ,A“, deren Objekte man mit 2 Int-Argumenten erzeugen
kann und eine Funktion ,fct®, die man mit einem A-Objekt aufrufen kann.

class A
{
public:
A(int, int);
}i

void fct (const Ag) ;

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 17 /40

Sind jetzt 2 Int-Variablen (z.B. ,x1“ und ,x2%) vorhanden, die zusammen ein A-Objekt
darstellen (vielleicht Zahler und Nenner flr einen Bruch oder so), so kann man explizit ein A-
Objekt erzeugen und damit die Funktion ,fct* aufrufen:

int x1 = ..., X2 = ...;

A temp (x1, x2);
fct (temp);

Dies kann man in C++ auch kurzer schreiben:

| fot (A(x1, x2));

Der explizite Konstruktor-Aufruf von ,A* erzeugt ein temporares Objekt von ,A“, das keinen
Namen hat, und am Ende der Anweisung (also quasi beim Semikolon) automatisch zerstort
wird. Damit kann das temporare Objekt problemlos in der Funktion ,fct“ genutzt werden, da
die Anweisung erst nach Rickkehr aus der Funktion beendet ist und erst dann das Objekt
zerstort wird.

In gewisser Weise ist dies eine explizite Konvertierung, denn die Objekte ,x1“ und ,x2°
werden zu einem A-Objekt gewandelt. Um zu zeigen, dass ein expliziter Konstruktor-Aufruf
semantisch nur eine Konvertierung ist und sich auch entsprechend verhalt, erweitern wir das
Beispiel etwas. Wir fugen der Klasse ,A“ noch einen Konstruktor mit nur einem Int-Parameter
hinzu (damit wir u.a. ,static_cast” nutzen kénnen), und vervollstandigen das Beispiel noch
mit einigen Ausgaben:

#include <iostream>
using namespace std;

class A

{

public:
A(int); // Konstruktor mit einem "int" - geht auch mit z.B. "static cast"
A(int, int); // Konstruktor mit zwei "int" - geht nur im funktionalen Stil

void print();
private:
int nl , n2 ;

}i

A::A(int nl)
{

A::A(int nl, int n2)

==

nl = nl;
n2 = n2;
}

void A::print ()
{
cout << "A mit nl:" << nl_ << " - n2:" << n2 << '\n';

}

void fct (A a) // Achtung - nun als Kopie - eigentlich schlechter - siehe Text (*)

{
cout << "fct(A) \n-> ";
a.print();

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 18/40

int main ()

{
fet (A (L, 2)); // Explizites temporaeres A-Objekt, funktionaler Stil

fct (A (3)); // Explizites temporaeres A-Objekt, funktionaler Stil
fct ((A)4); // Explizites temporaeres A-Objekt, alter C-Stil
fct (static_cast<A>(5)); // Explizites temporaeres A-Objekt, mit "static cast"

}

Ausgabe

fct (A)

-> A mit nl:1 - n2:2
fct (A)

-> A mit nl:3 - n2:0
fct ()

-> A mit nl:4 - n2:0
fct (A)

-> A mit nl:5 - n2:0

Im Prinzip ist das Beispiel selbsterklarend, da es keine Neuigkeiten enthalt, sondern nur
bekannte Features wiederholt und zusammenfalit. Einzige Besonderheit ist, dass die
Funktion ,fct“ in Zeile "(*)" das A-Objekt nicht mehr als Const-Referenz sondern als Kopie
bekommt. Dies ist eigentlich eine Verschlechterung, denn wir haben ja gelernt, dass die
Const-Referenz Ubergabe bei Objekten zu bevorzugen ist. Hier musste ich auf die
schlechtere Losung mit der Kopie zurtckfallen, da wir noch keine Const-Element-Funktionen
kennen (siehe Kapitel 14.10), und ohne die die Funktion mit Const-Referenz nicht
compilieren wirde.

14.8.3 Konvertierungs-Konstruktoren

In den Kapiteln Uber implizite Konvertierungen und die Konvertierungs-Hierarchien wurde
schon erwahnt, dass man in C++ auch benutzer-definierte Konvertierungen definieren kann,
die der Compiler auch fur implizite Konvertierungen nutzen darf. Diese benutzer-definierten
Konvertierungen definiert man entweder mit Konvertierungs-Konstruktoren oder
Konvertierungs-Operatoren (die in diesem Tutorial leider nicht besprochen werden).

Im Prinzip ist jeder Konstruktor, den man mit einem Argument aufrufen kann, ein
Konvertierungs-Konstruktor:
#include <iostream>

#include <string>
using namespace std;

class A

{

public:
A(int); // Konvertierungs-Konstruktor
A(const stringé&); // Konvertierungs-Konstruktor

A(bool, double = 3.14); // Konvertierungs-Konstruktor - dank Default-Argument

A::A(int n)

cout << "A (int: " << n << ")\n";

A::A(const string& s)

cout << "A(string: " << s << ")\n";

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 19/40

A::A(bool b, double d)
{

cout << "A (bool: " << b << ", double: " << d << ") \n";
}

void fct (const Ag)
{
}

int main ()
{
cout << boolalpha;

string str ("C++");

fct (1), // Erzeugt mit Konvertierungs—-Konstruktor "A(int)" temporaeres Objekt
fct (str) ; // Dito mit Konvertierungs-Konstruktor "A(const string&)"
fct (true); // Dito mit Konvertierungs-Konstruktor "A(bool, double=3.14)"
}
Ausgabe
A(int: 1)

A(string: C++)
A(bool: true, double: 3.14)

Maochte man nicht, dass ein Ein-Parameter-Konstruktor als Konvertierungs-Konstruktor zur
Verfugung steht — z.B. um Mehrdeutigkeiten und Fehler zu vermeiden — so kann man ihn
Lexplicit“ machen.

#include <iostream>
using namespace std;

class A
{
public:
explicit A (int); // <= Kein Konvertierungs-Konstruktor mehr: "explicit"

}i

void fct (const A&)
{
}

int main ()

{
fct (2); // Compiler-Fehler - kein Konvertierungs-Konstruktor vorhanden
fct (A (3)); // Explizite Konvertierung geht natuerlich weiterhin

14.8.3.1 Konvertierungs-Konstruktoren in C++11

In C++11 wurde der Begriff der Konvertierungs-Konstruktoren noch erweitert. Jetzt kdnnen
im Prinzip alle Konstruktoren Konvertierungs-Konstruktoren sein — nicht nur die, die mit
einem Argument aufrufbar sind. Auch die, die mit keinem oder mehreren Argumenten
aufrufbar sind. Damit beim Aufruf klar ist, welche Argumente zusammen ein Objekt bilden
sollen, mussen diese dann in geschweifte Klammern gesetzt werden.

#include <iostream>
using namespace std;

class A
{
public:
A(int, int); // In C++03 KEIN Konvertierungs—-Konstruktor
¥ // In C++11 mit {} als solcher nutzbar

A::A(int nl, int n2)
{

cout << "A(nl: " << nl << ", n2: " << n2 << ")\n";

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 20/40

}

void fct (const A&)
{
}

int main ()
{

fect( {1, 2} ) // Implizite Konvertierung mit geschweiften Klammern in C++11

}

Ausgabe
A(nl: 1, n2: 2)

Und die implizite Konvertierung mit ,{} funktioniert auch fur einen Standard-Konstruktor:

#include <iostream>
using namespace std;

class A
{
public:

A() ;
i

A::A()

cout << "A()\n";
}

void fct (const A&)
{
}

int main ()
{
fet ({}); // Bufruf von "A()" durch die geschweiften Klammern "{}"

}

Ausgabe
A()

Auch hier kann man die implizite Konvertierung wieder mit dem Schlusselwort ,explicit*
verhindern:

#include <iostream>
using namespace std;

class A
{
public:
explicit A(int, int); // RAuch in C++11 kein Konvertierungs-Konstruktor mehr

i

void fct (const Ag)
{
}

int main ()

fet( {1, 2
( )

b}y // Compiler-Fehler — da Konstruktor "explicit"
fct (A (3, 4));

// Explizite Konvertierung natuerlich weiterhin moeglich

)

Diese implizite Konvertierung mit den geschweiften Klammern funktioniert natirlich nicht nur
bei Funktions-Aufrufen, sondern Uberall — also auch z.B. bei Funktions-Rickgaben. Beide
Situationen haben wir auch schon kennen gelernt:

e Bei Funktions-Aufrufen haben wir sie schon bei der Nutzung der Element-Funktion ,insert*

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 21/40

bei Maps gesehen.
¢ Bei Funktions-Rickgaben wurden sie auch schon vorgestellt.

14.8.3.2 Namens-Konvention

In diesem Tutorial verwende ich folgende Namens-Konvention:

¢ Primare Konvertierungs-Konstruktoren sind Konvertierungs-Konstruktoren, die mit
einem Argument aufgerufen werden kénnen, d.h. sie konnen fur implizite Konvertierungen
ohne die geschweiften Klammern genutzt werden.

e Sekundare Konvertierungs-Konstruktoren sind Konvertierungs-Konstruktoren, die
nicht mit einem Argument aufgerufen werden kénnen, und daher fur implizite
Konvertierungen die geschweiften Klammern bendtigen. Sekundare Konvertierungs-
Konstruktoren gibt es daher nur in C++11.

Achtung — dies ist meine private Namens-Konvention. Ich kenne keine offizielle Namens-
Konvention um die Konvertierungs-Konstruktoren zu unterscheiden.

14.8.4 Kopier-Konstruktoren

Immer wenn eine Kopie eines Objektes erzeugt wird, wird ein Kopier-Konstruktor (oder
auch ,copy-constructor®) der Klasse des Objekts aufgerufen. Kopien werden z.B. erzeugt,
wenn eine Funktion einen Parameter ,call-by-value“ erwartet, eine Funktion ein Objekt als
Kopie zurlickgibt, oder einfach ein Objekt aus einem anderen erzeugt wird:

void f (std::string); // Parameter-Uebergabe "call-by-value"
std::string g(); // Funktions-Rueckgabe als Kopie

std::string sl;
std::string s2(sl) ; // Kopie eines Objekts anlegen

Welchen Konstruktoren sind denn jetzt Kopier-Konstruktoren?

Jeder Konstruktor einer Klasse, der mit einem einzelnen Objekt der Klasse aufgerufen
werden kann, ist ein Kopier-Konstruktor.

e Ein Kopier-Konstruktor muss das erste Argument per Referenz bekommen (sowohl const
als auch non-const — normal ist die Const-Referenz) — ansonsten wirde eine Endlos-
Rekursion erzeugt werden.

e Ein Kopier-Konstruktor erwartet daher ein Klassen-Objekt als erstes Argument und kann
beliebig viele weitere Parameter haben, die dann aber mit Default-Argumenten belegt sein
mussen.

e Er wird bendtigt, um ein neues Objekt aus einem bestehenden Objekt zu konstruieren,
z.B. bei einer Objekt-Definition, einem Funktionsaufruf mit call-by-value-Parametern, oder
der Rickgabe eines Objektes bei einer Funktion.

class A

{

public:
A(); // Standard-Konstruktor
A(const A&); // Kopier-Konstruktor

i

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 22/40

A::A()

==

cout << "Standard-Konstruktor\n";

A::A(const A&)

=

cout << "Kopier-Konstruktor\n";

}
void £(@A) { } // freie Funktion, die eine Kopie erwartet

int main ()

{
cout << "Erzeuge al\n";
A al;

cout << "Erzeuge a2\n";
A a2(al); // Kopier-Konstruktor

cout << "Rufe f auf\n";

f(al); // Kopier-Konstruktor wegen call-by-value
}

Ausgabe

Erzeuge al
Standard-Konstruktor
Erzeuge a2
Kopier-Konstruktor
Rufe f auf
Kopier-Konstruktor

Hinweis — statt einer Const-Referenz kénnte der Kopier-Konstruktor auch mit einer Non-
Const Referenz implementiert werden. Im Normalifall wollen wir bei einer Kopie das Original
aber nicht verandern — ein Kopier-Konstruktor mit Non-Const Referenz ist daher extrem
selten.

14.8.4.1 Automatischer Kopier-Konstruktor

Genauso wenig, wie die Klasse ,date“ bislang einen Standard-Konstruktor hatte, hatte sie
auch keinen Kopier-Konstruktor. Trotzdem konnten wir Date-Objekte aus anderen Date-
Objekte erzeugen, bzw. Date-Objekte an Funktionen Gbergeben — siehe Kapitel 14.4.

// BAuch bisher war das Kopieren von Date-Objekten kein Problem

void f (date d)
{

d.print(); // => 6.2.2004
}

int main ()
{
date dl(6, 2, 2004);
date d2(dl); // Kopiler-Konstruktor
£(d2) ; // Kopier-Konstruktor - wegen call-by-value

Der Grund dafur ist ein ahnlicher wie beim Standard-Konstruktor — der Compiler generiert in
vielen Fallen einen automatischen (oder ,impliziten*) Kopier-Konstruktor. Der Compiler
erzeugt den automatischen Kopier-Konstruktor, wenn es keinen user-deklarierten Kopier-
Konstruktor, Kopier-Zuweisungs-Operator, Move-Konstruktor, Move-Zuweisungs-Operator
oder Destruktor gibt.

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 23 /40

Der automatische (bzw. implizite) Kopier-Konstruktor:

¢ st public,

e nimmt das Original-Objekt als const-Referenz an, und

o ruft fUr jedes einzelne Element innerhalb der Klasse den jeweiligen Kopier-Konstruktor auf
und erzeugt so das neue Objekt.

Aber wenn der Compiler fur Klassen einen Kopier-Konstruktor automatisch erzeugen kann,
wozu dann einen eigenen schreiben? Nun, es gibt Situationen, in denen eine elementweise
Kopie nicht moglich ist, bzw. instabile oder fehlerhafte Zustande liefert — wir werden solche
Konstellationen noch kennen lernen. In solchen Fallen missen Sie den Kopier-Konstruktor
entweder selber implementieren oder ihn verbieten — siehe Kapitel 14.8.4.3.

Empfehlung — machen Sie sich beim Design und der Entwicklung von Klassen immer
Gedanken dariber, ob der automatische Kopier-Konstruktor ausreichend ist und fehlerfrei
arbeitet. Wenn nicht, miissen Sie selber einen sinnvollen Kopier-Konstruktor entwerfen und
implementieren, oder den Kopier-Konstruktor verbieten (sieche Kapitel 14.8.4.3). Im
Normalifall bezieht sich diese Uberlegung nicht nur auf den Kopier-Konstruktor, sondern
auch den Move-Konstruktor (siehe Kapitel 14.8.5), den Destruktor (siehe Kapitel 14.9), den
Kopier-Zuweisungs-Operator und den Move-Zuweisungs-Operator — und mindet dann in der
.Regel der 3, 4, 5, 6, 0%, die aus Zeitmangel nicht besprochen werden.

Die ,Regel-der-Drei, -Vier, -Funf, -Sechs, oder —Null* sagt aus, dass man entweder alle diese
funf speziellen Element-Funktionen plus die Swap-Funktion selber implementiert oder
verbietet — oder bei allen die impliziten Varianten nutzt. Entweder kimmert man sich um alle,
oder um gar keine. Alles andere macht in 99,99999 % der Falle keinen Sinn.

14.8.4.2 Alternative Kopier-Konstruktor Syntax
Was steht semantisch in der zweiten Zeile?

string sl;
string s2 = sl; // Was ist das hier semantisch?

Falsch, es ist keine Zuweisung! Bitte bedenken Sie, hier wird ein neues Objekt ,s2“ erstellt,
also muss es eine Objekt-Konstruktion sein, d.h. der Aufruf eines Konstruktors: ,Immer
wenn ein Objekt erstellt wird, wird der entsprechende Konstruktor aufgerufen!®.

Nur welcher Konstruktor ist das hier? Diese Syntax mit dem Operator ,=" ist eine alternative
Syntax fiir den Kopier-Konstruktor. Und falls auf der rechten Seite ein Objekt vom
gleichen Typ steht, wie das was konstruiert werden soll — dann ist das ja auch kein Problem.
Wie im obigen Beispiel: auf der rechten Seite vom Operator ,=“ steht das Objekt ,s1“ vom
Typ ,string“, und links soll das Objekt s2,“ vom Typ ,string” als Kopie von ,s1“ konstruiert
werden. Alles easy, alles okay.

Aber Vorsicht, das ist nicht immer so.

class A

{

public:
A(int);

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 24 /40

A(const A&);
private:
int n_;

}i

A::A(int n)
{
n_ = n;
cout << "A(int) : " << n << '\n';

A::A(const A& a)

n = a.n ;
cout << "A(const A&) : " << n_ << '\n';

// A(int) Konstruktor
) // Kopier-Konstruktor
oF // sematisch A (int) und Kopier-Konstruktor (*)

Ausgabe

A(int) : 2
A(const A&) : 2
A(int) : 5

Zeile (*) ist zwar die alternative Syntax fur den Kopier-Konstruktor, aber auf der rechten Seite
steht kein Objekt vom Typ ,A“, d.h. es kann kein Kopier-Konstruktor benutzt werden. Statt
dessen muss der Compiler das Argument auf der rechten Seite in ein ,A“ Objekt konvertieren
(daftr nimmt er natirlich den ,A(int)“ Konstruktor als Konvertierungs-Konstruktor — siehe
Kapitel 14.8.3), und nutzt dann dessen Ergebnis via Kopier-Konstruktor zur Objekt-
Initialisierung. Wir sehen: es wird ein eigentlich Uberflissiges Objekt erzeugt und dann
wieder zerstort — und das kostet unnétige Performance. Zum Glick muss der Compiler das
seit C++17 optimieren, von daher sehen wir auch keine entsprechenden Ausgaben.

Trotzdem muss der Compiler semantisch die Benutzung beider Konstruktoren checken
muss. Daher wenn er den notwendigen Konstruktor nicht zur Typkonvertierung benutzen
darf, bzw. kein Kopier-Konstruktor vorhanden ist, geht diese Syntax schief (Compiler-Fehler)
—wahrend die normale Syntax weiter funktionieren wirde.

14.8.4.3 Kopier-Konstruktor verbieten

Wie verbietet man den Kopier-Konstruktor einer Klassen? Und damit implizit das Kopieren
von Objekten eines Typs?

Die einfache Ldsung in C++ ist die Benutzung von ,=delete”, die wir schon fur den Standard-
Konstruktor in Kapitel 14.8.1 kennen gelernt haben.

class A
{
public:
A() ;
A(const A&) = delete; // Kopier-Konstruktor verboten
bi

A::A()
{

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 25/40

}

int main ()
{

A al;

A a2(al); // Compiler-Fehler, da Kopier—-Konstruktor verboten
}

Wird der Kopier-Konstruktor verboten, so sollte eigentlich immer auch der Move-Konstruktor
(siehe Kapitel 14.8.5), der Destruktor (siehe Kapitel 14.9), der Kopier-Zuweisungs-Operator
und der Move-Zuweisungs-Operator verboten werden. Alle diese flunf speziellen Element-
Funktionen gehdren zusammen — und dies findet sich dann in der ,Regel der 3,4,5,6 oder O
wieder.

Die Nicht-Implementierung des Kopier-Konstruktor (und spater auch des Kopier-Zuweisungs
Operators) hat oft noch einen weiteren Hintergrund — haufig verbietet man bei einer Klasse
auch das Kopieren, wenn es semantisch keinen Sinn macht:

e Nehmen Sie z.B. an, sie hatten eine Klasse, die in einer grafischen Anwendung den
Maus-Cursor reprasentiert. Was sollte hier passieren, wenn Sie das Maus-Cursor Objekt
kopieren? Bekommen Sie nun einen zweiten Maus-Cursor auf dem Bildschirm?

¢ Wenn man semantisch nicht beschreiben kann, was eine Funktion machen soll — wie will
man sie denn dann implementieren? Die Nicht-Implementierung bewahrt einen also vor
der unlésbaren Aufgabe, etwas nicht spezifierbares umsetzen zu missen.

e Andere Beispiele sind z.B. die Streams, die sich nicht kopieren lassen. Auch hier ist nicht
klar, was passieren sollte, wenn Sie ein File-Stream-Objekt kopieren kdnnten — sollte
dann die Datei kopiert werden?

14.8.5 Move-Konstruktor

Der Move-Konstruktor soll an dieser Stelle nur grob erwahnt werden. Der Hintergrund fir die
sogenannte Move-Semantik sind Objekte, deren Kopien relativ ,teuer” sind (bzgl.
Performance und Speicher-Verbrauch), die sich aber relativ ,billig“ verschieben lassen.
Beispiele fur solche Klassen sind die String-Klasse oder die meisten Container-Klassen.

Deklariert bzw. definiert wird der Move-Konstruktor mit einer Non-Const R-Value Referenz
auf ein Objekt der Klasse. Analog zum Move-Konstruktor gibt es auch noch einen Move-
Zuweisungs-Operator.

class A
{
public:
A(A&&) ; // Deklaration Move-Konstruktor
A& operator=(A&&); // Deklaration Move-Zuweisungs Operator
i
A::A(A&&) // Definition Move-Konstruktor
{
// Wie auch immer eine sinnvolle Implementierung aussieht...
}

Auch der Move-Konstruktor wird vom Compiler automatisch erzeugt, wenn:
¢ kein benutzer-deklarierter Kopier-Konstruktor,

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 26 /40

e Kkein benutzer-deklarierter Kopier-Zuweisungs-Operator,

e kein benutzer-deklarierter Move-Konstruktor,

e kein benutzer-deklarierter Kopier-Zuweisungs-Operator, und
e kein benutzer-deklarierter Destruktor

vorliegt.

Hinweis — wahrend es Standard-, Kopier- und Konvertierungs-Konstruktoren schon in
C++98 gab, ist der Move-Konstruktor eine Neuigkeit von C++11.

14.8.6 Sequenz-Konstruktor

Auch den Sequenz-Konstruktor will ich nur kurz erwahnen, und nicht im Detail vorstellen. Er
ist wie der Move-Konstruktor eine Neuigkeit von C++11. Er ist ein sehr spezieller
Konstruktor, der nur selten bendtigt wird. Er ist dann notwendig, wenn man ein Objekt mit
einer beliebig grolken Menge von Werten eines Typs initialisieren mdchte. Wir kennen dies
z.B. von den Containern wie dem Vektor, den wir mit Werten vorbelegen wollen:

#include <iostream>
#include <vector>
using namespace std;

int main ()
{

vector<int> v = { 1, 2, 3, 5, 7 }; // Vorbelegung mit einer Menge von Werten

for (int x : V)
{
cout << x << " - "

}

cout << '\n';

}

Ausgabe
1-2-3-5-7-

Mdochten wir eine vergleichbare Semantik fir unsere eigenen Klasse haben — d.h. die
Initialisierung mit den geschweiften Klammern und einer beliebigen Menge von Werten eines
Typs — dann ist der Sequenz-Konstruktor unser Freund.

14.9 Destruktoren

Analog zu den Konstruktoren gibt es eine spezielle Funktion zum Zerstoren eines Objekts -
den Destruktor. Er wird immer automatisch aufgerufen, wenn ein vollstandig konstruiertes
Objekt zerstort wird.

Ein Destruktor hat keinen Riickgabewert (auch nicht void).

Er hat keine Parameter.

Sein Name ist der Klassen-Name mit fihrender Tilde '~'.

Eine Klasse hat immer genau einen Destruktor.

Wird er nicht explizit deklariert, so erzeugt der Compiler einen impliziten Destruktor.

class A

{

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 27 /40

public:
A(int);
~A();

private:
int 1i;

}i

A::A(int n)
{

i=n;

cout << "Konstruktor " << i << '\n';
}

A::~A()
{
cout << "Destruktor " << 1 << '\n';

}

int main ()

{
cout << "Start\n";
A al(7);

{
cout << "Start neuer Block\n";
A a2(3);
cout << "Ende neuer Block\n";
} // <- Destruktoraufruf fuer a2

cout << "Ende\n'";
} // <- Destruktoraufruf fuer al

Ausgabe

Start

Konstruktor 7
Start neuer Block
Konstruktor 3
Ende neuer Block
Destruktor 3

Ende

Destruktor 7

e Die Aufgabe eines Destruktors ist es, das Objekt sauber abzubauen.

e Wird ein Objekt zerstort, so wird zuerst der Destruktor aufgerufen und dann der
Speicherplatz freigegeben — genau umgekehrt zu den Konstruktoren.

e Einimpliziter Destruktor ist immer public und ruft fir alle Attribute und Basis-Klassen
seinerseits die Destruktoren auf.

Bemerkung — der implizite Destruktor fur die Klasse ‘date’ macht nichts, da sie nur int-
Variablen enthalt, die — wie alle elementaren Datentypen — leere Destruktoren haben.

Empfehlung — machen Sie sich beim Design und der Entwicklung von Klassen immer
Gedanken darlber, ob der implizite Destruktor ausreichend ist und fehlerfrei arbeitet. Wenn
nicht, missen Sie selber einen sinnvollen Destruktor entwerfen und implementieren.

14.10 Const-Element-Funktionen

Nach dem bisherigen Wissen ware folgendes richtig, liefert aber einen Compiler-Fehler.

int main ()

{

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 28 /40

const date d;
d.print(); // Compiler-Fehler
}

Warum aber gibt der Compiler einen Fehler aus? Wir kdnnen doch:
¢ ein konstantes Datum definieren
e und print() lief bislang problemlos

Problem des Compilers
e dist konstantes date Objekt
e Aber es kdnnte sein, dass print() das Objekt verandert

Losung

Wir wissen, das ‘print()’ das Objekt nicht andert, der Compiler aber nicht. Darum mussen wir
dies dem Compiler mittteilen. Daflir wird das Schltsselwort const sowohl hinter die Element-
Funktions-Deklaration, als auch hinter den Kopf der Element-Funktions-Definition
geschrieben.

class date

{

void print () const; // hier ein const

. cen
void date::print () const // hier auch ein const
{

}

int main ()

{
const date d;
d.print(); // Jjetzt okay

}

Das Schlusselwort const hinter einer Element-Funktion besagt, dass diese Element-
Funktion das Objekt nicht andert. Denken Sie daran, dass const nach links bindet, und links
steht quasi das Objekt.

Versucht eine Const-Element-Funktion ein Objekt zu andern, gibt der Compiler nattrlich
einen Fehler aus.
void date::print () const

{
++year ; // Compiler-Fehler

}

In einer const-Element-Funktion kdnnen wiederum auch nur Element-Funktionen aufgerufen
werden, die selbst als const deklariert sind.

class A

{
public:
void fct () const;

void fct is const() const;

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 29/40

void fct_is not const();

}i

void A::fct () const

{
fct is const(); // okay, da eine const Element-Funktion
fct is not const(); // Compiler-Fehler, da nicht const

}

14.10.1 const gehort zum Funktions-Namen

Das Schlusselwort const gehort wie die Signatur (Name + Parameterliste) zum
Funktionsnamen.

Konsequenz — es kann zwei bis auf const vom Funktions-Namen und der Parameterliste
her identische Element-Funktionen geben. Die Entscheidung, welche Funktion vom Compiler
aufgerufen wird, trifft er anhand von Uberladenregeln bezogen auf das aktuelle Objekt. Fir
const Objekte wird die const Element-Funktion, fir non-const Objekte die non-const
Element-Funktion aufgerufen.

class A

{
public:
void f£();
void f() const;

}i

void A::f () // Definition der 'normalen' Version

{

cout << "normale Version\n";

}

void A::f() const // Definition der const-Version

{

cout << "const Version\n";

}

int main ()

{
A a;
const A ca;
a.f(); // ruft die 'normale' Version auf
ca.f(); // ruft die const Version auf

}

Ausgabe

normale Version
const Version

Hinweise:

e Eine const Element-Funktion kann nattrlich auch fiir non-const Objekte aufgerufen
werden, und wird es auch, wenn keine const-Funktion exisitert.

e Zwei bis auf const vom Funktions-Namen und der Parameterliste her identische Element-
Funktionen durfen unterschiedliche Ruckgabe-Typen haben, da es zwei ganzlich
unabhangige Funktionen sind.

Empfehlung — machen Sie jede Element-Funktionen const, bei der das maoglich ist. Sie
schranken sonst die Benutzung ihrer Klassen unnétig ein — z.B. bei der typischen Ubergabe
eines Objekts an eine Funktion mit ,const type&“koénnen nur const-Element-Funktionen fir
das Objekt aufgerufen werden.

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 30/40

Die andere Losung ware natirlich, einfach konsequent im gesamten Programm auf const zu
verzichten. Dann verschenken Sie aber viel Sicherheit — viel Spass bei der Fehlersuche.

14.11 this

In jeder Element-Funktion ist automatisch ein Zeiger auf das aktuelle Objekt definiert,
reprasentiert durch das SchlUsselwort this. Da wir Zeiger noch nicht kennen, nehmen wir
das erstmal so hin. Merken sie sich aber, dass - ahnlich zu Iteratoren - das dereferenzierte
,this®, d.h. ,*this“ immer das aktuelle Objekt selber ist, d.h. das Objekt fur das die Element-
Funktion aufgerufen wurde.

class A

{
public:
A(int);

A& £1();
void £2();

private:
int n ;

}i

A::A(int n)
{

}

A& A::fl()
{

cout << "fl:" << n_++ << '\n';
return *this;

}

void A::£f2()
{
cout << "f2:" << n << '"\n';

Ausgabe
£2:4
fl:4
£f2:5

Der this-Zeiger wird in der Praxis benutzt um z.B.:

o die Adresse des aktuellen Objekts zu ermitteln — z.B. bei Objektvergleichen,

e um das aktuelle Objekt selber zurlickzugeben — z.B. um Funktionsaufrufe zu verketten,
e um das aktuelle Objekt an andere Funktionen Ubergeben zu kénnen.

14.12 Klassen verwenden Klassen

Klassen kdnnen naturlich selber wieder als Attribute eingesetzt werden:

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 31/40

class person
{
public:
person(const date&);

private:
date birthday ;
bi

person:: person(const date& birthday)
{

birthday = birthday;
}

Wird ein Objekt erzeugt, so wird defaultmagig:

1. Speicher reserviert,

2. die Standard-Konstruktoren der Attribute in der Reihenfolge der Deklarationen, d.h.
ihrem Vorkommen in der Klassen-Definition aufgerufen, und

3. der Konstruktor der Klasse selber durchlaufen (Konstruktor-Rumpf).

Wird ein Objekt zerstort, ist die Reihenfolge genau umgekehrt, d. h.

1. wird der Destruktor der Klasse durchlaufen,

2. werden die Destruktoren der Attribute in der umgekehrten Reihenfolge der Deklaration
aufgerufen, und

3. wird der Speicher freigegeben.

Mit dieser Strategie wird sichergestellt, dass Objekte ,Ebene fiur Ebene” konstruiert werden.
Damit setzt die aktuelle Ebene immer nur auf vollstandig fertige Ebenen auf, d.h. kann nur
auf Objekte zugreifen, die einen stabilen Objektzustand erreicht haben.

14.13 Member-Initialisierungs-Listen

Probleme

Die Konstruktion eines Objekts wie im Beispiel in Kap. 14.12 ist nicht optimal, denn:

e Performance - erst wird das Attribut mit dem Standard-Konstruktor aufwandig initialisiert,
direkt danach wird es auf einen neuen Wert gesetzt.

e Was, wenn Attribute keinen Standard-Konstruktor haben?

e Wie koénnen const- oder Referenz- Attribute initialisiert werden?

Losung
Member-Initialisierungs-Listen

Syntax:
Konstruktorkopf : Member-Initialisierungs-Liste { Konstruktorrumpf }

class A
{
public:
A(int, const double&, const dateé&);

private:
int 1i;
double d1l1;
double d2;
date dal;
date daz;

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 32/40

i

A::A(int vl, const doubleé& v2, const date& v3)
i(vl), d2(2*v2), dal (v3), da2()

{

}

Far die in der Member-Initialisierungs-Liste aufgefiihrten Attribute werden die angegebenen
Konstruktoren statt der Standard-Konstruktoren aufgerufen — es kann naturlich auch der
Standard-Konstruktor angegeben werden, siehe im Beispiel das Attribut ,da2“.

14.13.1 Attribute ohne Standard-Konstruktor

Attribute, die keinen Standard-Konstruktor haben, miissen in der Member-Initialisierungs-
Liste aufgefihrt werden — dies gilt auch fur Basis-Klassen.

class A

{
public:
A(int);

B::B() // Compiler-Fehler - Attribut a kann nicht initialisiert werden

B::B(int arq) // okay - explizite Angabe des int-Konstruktors von A
: a(arg)

14.13.2 Objekt-Konstanten bzw. const Attribute

Const Attribute mussen in der Member-Initialisierungs-Liste aufgeflihrt werden, ausser sie
kénnen ohne expliziten Konstruktor-Aufruf erzeugt werden.

class A

{

public:
A();
A(int);

private:
const int ci;

}i

A::A() // Compiler-Fehler - const Attribut ci wird nicht initialisiert
{
}

A::A(int arg) // okay
: ci(2*arg+7)

{

}

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 33 /40

Bemerkung — verwechseln Sie nicht das Objekt und seine Attribute. Manche Leute
argumentieren immer wieder, dass das ,A“ Objekt doch erst nach Abarbeitung des
kompletten Konstruktors vollstandig erzeugt worden ist. Es sollte also doch maglich sein,
z.B. im Konstruktor von ,A* das Attribut ,ci“ zu setzen, ohne die Initialisierungsliste zu
benutzen.

A::A() // Compiler-Fehler - ci wird nicht initialisiert

{

ci =7; // Compiler-Fehler - ci ist const

Aber diese Argumentation ist falsch, denn es werden zwei Ebenen durcheinander gewurfelt.
Ein Objekt ist komplett fertig, sobald sein Konstruktor erfolgreich komplett abgearbeitet
wurde. Dies gilt naturlich auch fur Objekte in Objekten.

14.13.3 Referenz-Attribute
Referenz-Attribute mussen in der Member-Initialisierungs-Liste initialisiert werden.

class A
{
public:
A() ;
A(const date&);

private:
const date& date ;

}i

A::A() // Compiler-Fehler - Referenz wird nicht initialisiert
{
}
A::A(const date& d) // okay
: date (d)

{
}

Fir den Standard-Konstruktor ,A()“ muss der Compiler einen Fehler melden, da die Referenz
nicht initialisiert wird.

Achtung - wenn sie ein Referenz-Attribut benutzen, muss sichergestellt sein, dass das
referenzierte Objekt mindestens solange lebt wie das erstellte Objekt. Ansonsten zeigt die
Referenz irgendwann in Speicherbereiche, die dem Programm nicht mehr gehéren, bzw.
wieder anderweitig benutzt werden.

Dies passiert schnell, wenn z.B. dem Konstruktor selber schon temporare oder lokale
Objekte mitgegeben werden. Fir den Aufrufer sieht alles okay aus, da er die Implementation
der Klasse nicht kennt, bzw. auch nicht kennen soll. Der Implementierer der Klasse hat keine
Chance festzustellen, dass das Objekt nur eine begrenzte Lebensdauer hat.

Empfehlung - verwenden sie Referenz-Attribute sehr vorsichtig. Und wenn, verwenden sie
sie nur so, dass ein Benutzer der Klasse keine Probleme mit der Lebensdauer hat, bzw.
weisen sie ihn explizit darauf hin.

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 34 /40

14.13.4 Typischer Fehler

Das folgende Beispiel stellt eine Klasse fur einen Kreis dar. Aus Performancegriinden wird in
dieser Klasse sowohl der Umfang als auch der Radius gespeichert, damit die Berechnung
nur einmal erfolgen muss.

Diese Klasse enthalt einen Fehler, welchen?

Was gibt die Element-Funktion ,print() const® fur das Objekt ,limit* aus?

class circle

{

public:
circle(double);
void print () const;

private:
double circumference ;
double radius ;

}i

circle::circle(double radius)

: radius_ (radius), circumference (2*3.1415926*radius )
{
}

void circle::print () const
{
cout << "Kreis mit Radius " << radius
<< " und Umfang " << circumference
<< "\n';
}
int main ()

{
circle 1imit(4.0);
limit.print() ;

Fehler — da die Attribute in der Reihenfolge der Deklaration konstruiert werden — wird
,circumference_“ vor ,radius_“ mit einem zu dem Zeitpunkt rein zufélligen Wert fir den
Radius erzeugt.

Achtung — die Anordnung in der Member-Initialisierungs-Liste spielt keine Rolle fir die
Reihenfolge der Konstruktor-Aufrufe der Attribute.

14.14 Deklarationen

Zwischen einzelnen Klassen konnen Ring-Abhangigkeiten herrschen:
A braucht B und B braucht A.

Da der Compiler nur bekannte Klassen verwenden kann, kénnen Klassen mit dem
Schlusselwort class und dem Klassen-Namen deklariert werden.

class B; // macht die Klasse B fir den Compiler bekannt
class A
{
public:

int fct(const B&); // Benutzung der Klasse B als Referenz-Parameter
}i
class B // Deklaration Klasse B

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 35/40

public:
A ay
bi

Die Deklaration funktioniert nur, solange der Compiler keine naheren Angaben Uber die
vorwarts deklarierte Klasse bendtigt, z.B. Grole oder internen Aufbau.

class B;

class A

{

public:
A();
void f(B¥*); // okay
void f(B&) ; // okay
void £(B); // okay
B* g(); // okay
B& g(); // okay
Bg(); // okay

private:
B* p; // okay
B& r; // okay
B b; // Compiler-Fehler

}i

Eine Deklaration reicht aus fur:

e Funktions-Parameter und Funktions-Ruckgaben in Deklarationen, da der Compiler hier
keinen Code erzeugt, sondern hier nur eine Funktion deklariert wird.

e Zeiger- und Referenz-Attribute, da deren Grésse unabhangig vom Aufbau der
referenzierten Klasse ist, und dem Compiler die Grosse bekannt ist.

Fur Wert-Attribute muss die Deklaration der Attribut-Klasse bekannt sein, da der Compiler
z.B. die Grosse der Klasse wissen muss.

14.15 Klassen-Elemente

Klassen-Elemente sind klassenspezifische Elemente, die keinem Objekt sondern der
Klasse zugeordnet sind.

Es gibt:
e Klassen-Variablen, und
e Klassen-Funktionen.

14.15.1 Klassen-Variablen

Eine Klassen-Variablen ist eine der Klasse zugeordnete Variable, die:
e nur einmal im Programm existiert, unabhangig von der Anzahl instanziierter Objekte,
e und den normalen Zugriffsrechten der Klasse unterliegt.

Angesprochen wird sie:
e von innerhalb der Klasse ganz normal uber ihren Namen, und
e von ausserhalb mit zusatzlichem Objekt- oder Klassenbezug.

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 36 /40

Klassen-Variablen mussen in der Klasse deklariert, und einmal im Programm (ausserhalb
der Klasse) definiert werden:

Syntax
Deklaration: static typ name;
Definition: typ klasse::name { ,(Konstruktor-Argument-Aufrufliste)” | ,,= Initialisierer” };

class A

{
public:
void fct () ;

static int si;

}i
int A::si = 8; // Definition mit Initialisierung

void A::fct ()
{

cout << si << '\n'; // direkter Zugriff, da innerhalb der Klasse
}
int main ()
{

cout << A::si << "\n'; // Zugriff ueber den Klassen-Namen

A ay

cout << a.si << '\n'; // Zugriff ueber ein Objekt

a.fct (),

Bemerkung - im Prinzip ist eine Klassen-Variable eine globale Variable, die aber im
Namensraum der Klasse liegt, und damit z.B. zugriffsmassig eingeschrankt werden kann.

Hinweis - ein am Anfang gern gemachter Fehler ist das Vergessen der Definition einer
Klassen-Variablen. Dies fuhrt zu einem eigentlich eindeutigen Linker-Fehler, aber aller
Anfang fallt schwer - erst recht in C++.

14.15.2 Klassen-Funktionen

Analog zu Klassen-Variablen gibt es Klassen-Funktionen, die ebenfalls nicht einem Objekt,
sondern der Klasse zugeordnet sind, und auch den normalen Zugriffsrechten der Klasse
unterliegen.

Angesprochen werden sie:
¢ von innerhalb der Klasse ganz normal tber ihren Namen, und
e von ausserhalb mit zusatzlichem Objekt- oder Klassenbezug.

Klassen-Funktionen mussen in der Klasse mit static deklariert werden. Die Definition erfolgt
analog zu den normalen Element-Funktionen.

class A
{
public:
static void fct ()

}i

void A::fct ()

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 37/40

cout << "static A::fct ()\n";

int main ()

{
A::fct ()
A a;
a.fct();

Bemerkung - im Prinzip ist eine Klassen-Funktion eine globale Funktion, die aber im
Namensraum der Klasse liegt, und damit z.B. zugriffsmassig eingeschrankt werden kann,
oder z.B. Zugriff auf private Elemente der Klasse hat.

Hinweis - Klassen-Funktion durfen nicht den gleichen Namen und die gleiche Parameterliste
wie eine Element-Funktion der Klasse haben. Da eine Klassen-Funktion auch mit
Objektbezug aufrufbar ist, ware der Aufruf nicht eindeutig.

14.15.2.1 Kein Objektbezug

Klassen-Funktionen haben keinen Objektbezug, selbst wenn sie mit Objektbezug aufgerufen
werden. Darum kdénnen sie auch mit Klassenbezug aufgerufen werden.

Daraus ergeben sich einige Unterschiede gegenuber Element-Funktionen:

¢ In Klassen-Funktionen ist kein this-Zeiger definiert - da sie keinen Objektbezug haben.

¢ Klassen-Funktionen kénnen nicht const sein - worauf sollte sich das const beziehen?

¢ In Klassen-Funktionen kann nur auf andere Klassen-Elemente zugegriffen werden, denn
der Aufruf von Element-Funktionen oder der Zugriff auf Attribute bendtigt einen
Objektbezug.

¢ Klassen-Funktionen kdnnen nicht virtuell sein.

class A
{
public:
static void f1();
static void £2();
static void £3() const; // Compiler-Fehler - kein const bei static Funktionen

void fect () ;
private:

int 1i;

static int si;

}i

void A::£f1()

{
si = 10; // okay, da Klassen-Variable
£2(); // okay, da Klassen-Funktion
void* vpThis = this; // Compiler-Fehler - this nicht definiert
fect () ; // Compiler-Fehler - kein Objektbezug
i=12; // Compiler-Fehler - kein Objektbezug

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 38/40

14.16 friend

Mit dem Schlusselwort friend kann freien Funktionen und Klassen erlaubt werden auf alle
Elemente einer anderen Klasse zuzugreifen - auch die privaten. Sie werden quasi zu
Freunden der Klasse.

14.16.1 Freie friend-Funktionen

Damit eine freie Funktion auf alle Elemente einer Klasse zugreifen kann, muss sie innerhalb
der Klasse mit friend deklariert, d. h. zum Freund der Klasse gemacht werden.

An der Deklaration mit dem Schllsselwort friend erkennt der Compiler, dass es sich nicht
um eine Element-Funktion, sondern um eine freie Funktion handelt.

class A
{
public:
A(int i) : n(i) {}
friend int fct(const A&); // Achtung - keine Element-Funktion,
// sondern eine freie Funktion
private:
int n;
i
int fct(const A& a) // Definition der freien Funktion fct
{ // Da friend von A, darf sie auf alle
return a.n; // Elemente von A zugreifen
}
int main ()
{
A a(l7);
cout << fct(a) << '"\n'; // Ausgabe: 17
}

Hinweis - noch einmal: obwohl ,fct“ innerhalb der Klasse ,A“ deklariert wurde, ist ,fct” keine
Element-Funktion, sondern aufgrund von friend eine ganz normale freie Funktion, die eben
nur zusatzlich auf alle Elemente der befreundeten Klasse zugreifen kann.

14.16.2 friend-Klassen

Um eine komplette Klasse zum Freund einer anderen zu machen, muss die Klasse als
Vorwarts-Deklaration mit friend in der Klassendefinition aufgefihrt werden. Damit darf
innerhalb der befreundeten Klasse auf alle Elemente der Freund-Klasse zugegriffen werden.

class B;

class A
{
public:
int f (const B&) const;
i

class B
{
friend class A; // macht A zum friend von B
public:
B(int 1) : n(i) {}
private:

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1

Seite 39/40

int n;

}i

int A::f (const B& b) const // Definition der Element-Funktion A::f
{ // Da A friend von B ist, duerfen alle
return b.n; // Funktionen von A auf alle Elemente
} // von B zugreifen
int main ()
{
A a;
B b(42);
std::cout << a.f(b) << '\n'; // Ausgabe: 42

14.16.3 Weiteres

friend-Beziehungen sind nicht transitiv
A friend von B und B friend von C daraus folgt nicht: A friend von C.

class A

{

friend class B;
int 1i;

}i

class B

{

friend class C;

}i

class C
{
public:
void fct (A& a)
}i

{ a.i++; } // Compiler-Fehler - C ist kein Freund von A

Bemerkung - friend-Beziehungen werden auch nicht vererbt.

14.17 Klassenbezogene Typen

In Klassen kdnnen nicht nur Element-Funktionen, Konstruktoren, Destruktoren, Attribute,
Klassen-Funktionen und Klassen-Variablen definiert werden, sondern auch Typen, z.B.:
o Typ-Aliase

e Aufzahlungstypen mit enum

¢ Innere Klassen

Diese Typen unterliegen den normalen Zugriffsbereichen der Klasse, d.h. private Typen
kénnen nur innerhalb der Klasse benutzt werden, wahrend public Typen Uberall benutzbar
sind — siehe z.B. Kapitel 14.3.

Angesprochen werden die Typen:
e von innerhalb der Klasse ganz normal uber ihren Namen, und
e von ausserhalb mit zusatzlichem Klassenbezug.

class paragraph
{
public:
enum alignment

{ left, center, right };

© Detlef Wilkening 2025 www.wilkening-online.de



Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 7 — Version 1 Seite 40/40

alignment get alignment() const { return alignment ; }
void set alignment (alignment arg) { alignment = arg; }
private:

using length = long;

class word

{
public:
const stringé& value () const;

private:
string value ;

}i

alignment alignment ;
length length ;
bi

const string& paragraph::word: :value()

{

return value ;

}

int main ()
{

paragraph para;

const

para.set alignment (paragraph::center);
paragraph: :alignment al = para.get alignment();

paragraph: :alignment a; // okay, da public
paragraph: :lenght 1; // Compiler-Fehler, da private
paragraph: :word w; // Compiler-Fehler, da private

© Detlef Wilkening 2025

Hinweis — innere Klassen (auch ,verschachtelte Klassen®, ,eingebettete Klassen* oder
.nested classes“) werden eigentlich nur als Hilfsklassen eingesetzt.

www.wilkening-online.de



