Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 8 — Version 1 Seite 1/14

Vorlesung

Objektorientiertes
Programmieren
in
C++

Teil 8 - WS 2025/26

Detlef Wilkening
www.wilkening-online.de
© 2025

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 8 — Version 1 Seite 2/14

15 Praprozessor, Compiler, LinKer, ... ccccsscsee s s s s s sssssss e s s s esssnsnes 2
15.1 Quelltext-Aufteilung, Header, SOUrCEN.............ccccviiiiiiiiie e 2
15.2 PrAPIOZESSON ... eeiieiiiteieeeeetiee e e ettt te e e sttt e e e e sttt e e e aaseeeeeeaasseeaeeassseeeeaassaeaeeasseeeaeeasseeenanns 3
15.3 COMIPIIET ...ttt e et e e e et e e e e e e e e e e enaeeeeeeanaseeeeennraeeeeanns 4
(ST S 1o Y 6
(S TS T L= 11 7
15.6 ODR UNd HEAder-GUArdS..........cooooeeiiieieieeeeeee e 8
15.7 QUEIEXT-AUFEIIUNG ..o e 9
LS TR T [] = TSRS 9
15.9 BIbOthEKEN ... 12

15Praprozessor, Compiler, Linker, ...

Bislang haben wir immer den gesamten Quelltext in eine Datei geschrieben. Das wird
langsam unubersichtlich, und auf3erdem Iasst sich so ja nichts wiederverwenden — darum
soll das jetzt geandert werden. Leider betreten wir damit den noch dunkelsten Bereich von
C++. C++ implementiert die Aufteilung des Codes auf mehrere Dateien u.a. mit sogenannten
Header-Dateien, die dann von dem sogenannten Praprozessor zur eigentlichen
Ubersetzungs-Einheit vorverarbeitet werden. Wir werden dies in den nachsten Kapiteln im
Detail besprechen. Aus heutiger Sicht ist dies kein modernes Verfahren mehr. Mit C++20
fuhrt C++ Module ein, die die Header ablésen sollen. Aber C++20 ist gerade erst erschienen,
und in der Praxis kenne ich keine Bibliothek und kein Projekt, das auf C++20 Module
aufsetzt. Selbst die C++ Standard-Bibliothek selber liegt noch nicht in Modulen vor — dies ist
erst fir C++23 vorgesehen. Von daher werden wir uns in der Praxis noch jahrelang mit
Headern rumschlagen missen — darum besprechen wir nur diese.

15.1 Quelltext-Aufteilung, Header, Sourcen

Um zu Uberlegen, wie eine Aufteilung aussehen kann, lassen sie uns anschauen, welche
~Schnittstellen-Elemente“ wir bislang kennen, und was fir ihre Implementierung bzw. ihre
Benutzung bendtigt werden.

Unter dem Begriff ,,Schnittstellen-Elemente“ verstehen wir hier alle Elemente, die wir in
unserem Code benutzen um ihn zu schreiben, also nach unserem augenblicklichen

Wissenstand: Konstanten, Typen (Typ-Aliase, Aufzahlungstypen, Klassen) und Funktionen.

Schnittstellen-Element Benotigt mindestens

Konstanten
Deklaration —
Definition -—
Benutzung Deklaration (oder Definition — je nachdem)

Typ-Aliase
Definition -

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 8 — Version 1 Seite 3/14

Benutzung Definition

Aufzahlungstypen
Definition -
Benutzung Definition

Funktionen (freie)
Deklaration -
Definition (Implementierung) -
Benutzung Deklaration

Klassen
Deklaration (s.u.) -
Definition -
Implementierung (Element-Funktionen) Klassen-Definition
Benutzung Klassen-Definition

Hiermit ist sofort offensichtlich, welche Dinge fur die Benutzung der Schnittstellen-Elemente
bendtigt werden:

e Konstanten-Deklarationen oder —Definitionen

e Typ-Alias-Definitionen

o Enum-Definitionen

e Deklarationen von freien Funktionen

¢ Klassen-Definitionen

Wenn wir diese Dinge in extra Dateien legen konnten, brauchten wir nur noch einen
Mechanismus, der sie in einer anderen Datei bekannt macht. Dann kdnnten wir sie
problemlos in unseren Quelltexten verwenden. Einen solchen Mechanismus gibt es in C++ in
Form des Praprozessors mit der ,include“-Anweisung — siehe nachstes Kapitel.

Diese Extra-Dateien fur die Schnittstellen-Elemente nennt man in C++ Header, und sie
haben typischerweise die Endung ,*h“ oder ,.hpp“. Alle C++ Header haben keine Endung.

Die Dateien mit den Implementierungen werden haufig Source-Dateien oder kurz Sourcen
genannt, obwohl natirlich auch die Header Source-Code enthalten. Source-Dateien haben
typischerweise die Endung ,..cpp® oder ,.cc”.

Aullerdem zeigt die Tabelle direkt, dass es wohl moglich sein konnte, die Implementierungen
(Definition) der freien Funktionen und der Element-Funktionen in eigene Quelltexte
auszulagern, denn diese werden fur die Benutzung nicht bendtigt. Dann stellt sich nur die
Frage, wie einzelne unabhangige Quelltexte Ubersetzt (compiliert) werden, und fir das
eigentliche Ergebnis (das ausfuhrbare Programm) zusammengefihrt werden? Dies wird
durch Compiler und Linker in C++ gemacht — siehe weiter unten.

15.2 Praprozessor

In C++ gibt es einen sogenannten Praprozessor, der am Anfang eines Compilevorgangs
Uber den Quelltext l1auft und alle Praprozessor Anweisungen verarbeitet. Praprozessor

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 8 — Version 1 Seite 4/14

Anweisungen sind alle die mit einem ,#“ beginnen - augenblicklich kennen wir nur die include
Anweisung ,#include®.

Der Praprozessor ist ein ziemlich dummes Programm und macht eigentlich nichts anderes
als einen etwas intelligenteren Textersatz (eine Art Suchen & Ersetzen).

Im Falle der include Anweisung sucht er in den sogenannten Include-Pfaden nach der
entsprechenden Datei, flgt sie quasi 1:1 in unseren Quelltext ein, und speichert das

Ergebnis als temporare Datei (die bildet dann den eigentlichen Input fir den Compiler).

Original-Dateien Praprozessor macht daraus temporare Datei ,,y.tmp*“

// Datei x.h
void £1();
void f2(int);
// Datei y.cpp
#include "x.h"

void g ()
{

£10;

=> void £1();
void f2(int);

void g ()

£10;

Der Praprozessor unterstutzt zwei Arten von Include’s:
e #include <header>
e #include "header"

Der Unterschied zwischen den beiden Includes ist die Suchstrategie nach den Dateien im
Include-Pfad — auf Details soll hier aus Zeitmangel nicht eingegangen werden. Aus
Faustregel kann man sagen: benutzen sie fur die System-Header die <...> Variante, und fur
ihre eigenen Header die "..." Variante.

Bemerkung — es gibt noch viele weitere Praprozessor-Anweisungen — zwei weitere werden
wir gleich im Kapitel Uber Header-Guards noch kennen lernen. Aber im Rahmen der
Vorlesung war‘s das dann auch. In C++ ist der Praprozessor auch nicht mehr so wichtig wie
in C, da in C++ viele typische C- Praprozessor Aufgaben durch leistungsfahigere C++
Sprachmittel Gbernommen werden.

15.3 Compiler

Der Compiler bekommt als Input den temporaren Output des Praprozessors — in der Praxis

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 8 — Version 1 Seite 5/14

sieht man dies normalerweise nicht, es lauft transparent im Hintergrund ab. Aber in der

Praxis hat auch jeder Entwicklungsumgebung eine Mdglichkeit, sich den Praprozessor-
Output anzuschauen.

Der Compiler Ubersetzt jetzt den Quelltext in Maschinencode — der Output des Compilers
sind Objekt-Files, die unter Windows meist die Endung ,,*.obj“ und unter Linux meist ,*.0"
haben. Ein Object-File ist noch kein ausfuhrbares Programm, sondern nur der in
Maschinensprache Ubersetzte Code eines Quelltexts.

Temporare Datei ,,y.tmp“ Compiler macht daraus das Object-File ,,y.obj“

void f1();
void f2(int);

void g ()
{

£10;

=> 100101101110111001010101010
101010000111101011100010000
1 ... 110100010011

Hierbei sind mehrere Dinge wichtig:

 Jeder Ubersetzungsvorgang, d.h. der Durchlauf von Préprozessor und Compiler, ist
vollkommen unabhangig von anderen. Ein Compiler schaut nie nach links und rechts (in
andere Dateien), selbst wenn er dann Dinge wissen konnte, die ihm helfen wirden.

e Ein Compiler kimmert sich nicht um Vollstandigkeit des Programms — im obigen Beispiel
interessiert ihn nicht ob die Funktion ,f1“ irgendwo implementiert ist, auch wenn sie
benutzt wird. Da sie deklariert ist (Das ist immerhin das Versprechen dass es sie geben
sollte!), ist die Benutzung fur ihn definiert, und er compiliert den Quelltext.

e Ein Compiler kimmert sich nicht um unbenutzte Deklarationen und Definitionen. Im
obigen Beispiel ist ,f2* deklariert, wird aber nicht benutzt. Dem Compiler ist das egal.

Ein Object-File kann noch kein ausfihrbares Programm sein, da meistens noch einige Dinge
fehlen: all die deklarierten Dinge, die benutzt worden sind. Im Beispiel die Funktion ,f1“. Der
Compiler lasst an dieser Stelle im Maschinencode Platz firr die echte Adresse, und schreibt
in die sogenannte Import-Tabelle, was noch bendtigt wird.

AulRerdem erstellt der Compiler eine sogenannte Export-Tabelle, in der alle Symbole stehen,
die in diesem Object-File implementiert worden sind.

Das eigentliche Object-File ,y.obj* sieht also ungefahr folgendermassen aus:

Import
Adr Symbol
0000:0062 void f1()
Export
Adr Symbol
0000:0040 void g()

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 8 — Version 1 Seite 6/14

Code
Adr Maschinencode Pseudocode Originalcode
0000:0000
0000:0040 3F 7E movem do-d4, sp void g()
0000:0060 B3 C2 00 00 00 00 call f1 f1()
0000:0080 A2 44 ret return

15.4 Linker

Der Linker hat nun die Aufgabe, aus all den Object-Files das ausfuhrbare Programm

zusammen zu setzen. Dazu muss er im einfachsten Fall:

e Die Code-Segmente aller Object-Files zusammenbinden

e Alle offenen Adressen (Import-Eintrage) auflésen

e Die C++ Laufzeitumgebung dazubinden (Standard-Bibliothek und allgemeine Dinge, die
zum Ablauf des Programms bendtigt werden).

e Das Programm in einer Form abspeichern, die das OS auswerten kann.

Schauen wir uns das mal an einem Beispiel an: gehen wir mal davon aus, dass es neben
dem Quelltext ,.y.cpp“ von oben noch eine Datei ,z.cpp“ gibt, die folgenden Inhalt hat:

// Datei z.cpp

void g () ;

void £1 ()

g();

return 0;

}

Hieraus erzeugt das Gespann Praprozessor/Compiler folgende Objekt-Datei ,z.obj*:

Import
Adr Symbol
0000:0132 void g()
0000:0142 void g()
Export
Adr Symbol
0000:0100 void f1()

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 8 — Version 1

Seite 7/14

Code
Adr Maschinencode Pseudocode Originalcode
0000:0000
0000:0100 3F 86 movem a0-a1, sp void f1()
0000:0110 A2 44 ret return
0000:0120 3F92 ... movem a0-a7, sp int main()
0000:0130 B3 C2 00 00 00 00 call g 9()
0000:0140 B3 C2 00 00 00 00 callg g()
0000:0150 A2 44 00 00 00 00 ret 0 return 0

Der Linker fugt die beiden Objekt-Dateien jetzt zu einem lauffahigen Programm zusammen,
und l6st dabei alle Referenzen (hier ,f1“ und ,g“) auf.

Code
Adr Maschinencode Pseudocode Originalcode
0000:0000
0000:0010 3F 86 movem a0-a1, sp void f1()
0000:0020 A2 44 ret return
0000:0030 3F92 ... movem a0-a7, sp int main()
0000:0040 B3 C2 00 00 00 70 callg g()
0000:0050 B3 C2 00 00 00 70 call g g()
0000:0060 A2 44 00 00 00 00 ret 0 return O
0000:0070 3F 7E ... movem do-d4, sp void g()
0000:0090 B3 C2 00 00 00 10 call f1 f1()
0000:00B0 A2 44 ret return

Hinweis — in Wirklichkeit ist da noch etwas mehr zu machen, und die Adressen duirfen z.B.
vom Linker noch gar nicht endgultig eingetragen werden — das macht erst der Loader des
OS. Aber vom Prinzip her funktioniert das alles so.

15.5 Fehler

Wenn sie Compilerfehler bekommen, dann haben sie in der entsprechenden Datei (bzw. in
den von ihr eingebundenen Dateien) einen syntaktischen Fehler gemacht.

© Detlef Wilkening 2025

www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 8 — Version 1 Seite 8/14

Wenn sie Linkerfehler bekommen, dann sind alle ihre Dateien syntaktisch in Ordnung, aber

die Auflésung der Symbole klappt nicht — typische Fehler:

e Symbol nicht vorhanden, d.h. sie haben ein Symbol deklariert und benutzt, aber
nirgendswo implementiert.

e Symbol mehrfach vorhanden, d.h. sie haben ein Symbol mehrfach implementiert
(zumindest sieht der Linker das so — siehe auch die Diskussion bei inline Funktionen
weiter unten).

15.6 ODR und Header-Guards

Eine Sache muss noch geklart werden — die ODR und ihre Konsequenzen. In C++ gibt es
die sogenannte ODR ,,One-Definition-Rule“, die einfach nur besagt, dass eine Definition in
einer Ubersetzungseinheit nur einmal vorkommen darf. Auch wenn die Definition beim
zweiten Mal identisch zur ersten ist, ist dies ein Compilerfehler.

Nun gut, aber wo ist das Problem?

Durch indirektes includieren kann es leicht passieren, das Definitionen doppelt in
Ubersetzungseinheiten vorhanden sein. Darum sollte in jedem Header ein sogenannter
Header-Guard vorhanden sein.

// Header "x.h"

#ifndef X H
#define X H

class x
{
}i

#endif

Ein Header-Guard besteht aus mehreren Praprozessor-Anweisungen.

e Die Anweisung ,#ifndef X_H* fragt ab, ob das Praprozessor-Makro ,X_H*“ nicht definiert
ist. Wenn es nicht definiert ist, dann wird der Praprozessor-If-Block betreten — der enthalt
dann den normalen Header-Inhalt.

e Zuerst wird das Praprozessor-Makro ,X_H“ aber definiert — mit der Anweisung ,#define
X_H“

e Beendet wird der Praprozessor-If-Block betreten mit der Anweisung ,#endif*.

Wird der Header ,x.h" jetzt zweimal eingebunden, dann wird er beim ersten Einbinden ganz
normal vollstandig includiert, da das Makro nicht definiert ist — aber es wird jetzt auch
definiert. Bei weiteren Includes ist das Makro nun aber definiert, und daher weist die
Anweisung ,#ifndef X_H“ den Praprozessor ab, und der Praprozessor-If-Block wird kein
weiteres Mal eingebunden. Ergebnis: die Definiton ist nur einmal vorhanden, die ODR st
erfillt.

Damit Header-Guard-Makros eindeutig sind, gibt es eine einfache Konvention fur ihre

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 8 — Version 1 Seite 9/14

Benamsung:

e Header-Guard-Makros werden — wie alle Praprozessor-Makros — per Konvention
GROSS geschrieben.

e Header-Guard-Makros entsprechen dem Namen der Datei, mdglicherweise inklusive
Verzeichnis-Namen (bei verschachtelten Strukturen).

e Die Namensteile von Header-Guard-Makros werden durch ,_“ getrennt.

¢ An das Header-Guard-Makro wird noch der Postfix ,_H* angehangt.

Achtung — leider recht verbreitet, aber trotzdem gefahrlich und falsch, ist die Konvention

dem Header-Guard-Makro noch das Préfix , “ oder,_ “ vorzustellen. Ein solcher

Makroname —z.B., X _H“bzw.,_ X H—istin C++ reserviert!

¢ Namen mit einem Underscore am Anfang sind fur den Compiler und die
Entwicklungsumgebung reserviert.

e Namen mit zwei Underscore am Anfang sind fur die Sprache reserviert —z.B., FILE__“
oder, LINE__ “

15.7 Quelltext-Aufteilung

Pro ,logischem Modul“ (z.B. einzelne Klasse mit moglicherweise zugehdrigen freien
Funktionen) sollte es einen Header und eine Implementierungs-Datei geben.

Der Header enthalt Konstanten, Typ-Defintionen (Typedef’s, Enums, Klassen,...) und
Deklarationen der freien Funktionen. Die Implementierungs-Datei includiert als erstes den
Header und enthalt die Implementierungen der Element-Funktionen und freien Funktionen
des Headers.

15.8 Inline

15.8.1 Thema ,,Performance*
C++ hat u. a. das Ziel: effizienter Code, schnelle Programme.
Selbst wenn Funktionsaufrufe in C++ nicht viel Zeit kosten, so bergen sie doch immer einen

gewissen Overhead in sich. Gerade bei sehr kleinen einfachen Funktionen kann dieser
Overhead einen nicht vernachlassigbaren Anteil darstellen.

In C++ gibt es inline-Funktionen, die ganz normale Funktionen sind, aber vom Compiler
direkt an der Aufrufstelle expandiert werden kénnen. Dabei wird die normale Semantik von
Funktions-Aufrufen vollstandig gewahrt.

15.8.2 Freie Funktionen

Um eine Funktion inline zu machen, schreiben Sie das Schllsselwort inline vor die
Funktions-Deklaration und -Definition.

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 8 — Version 1 Seite 10/ 14

inline int max(int, int);

inline int max(int a, int b)
{
return a>b ? a: b;

}

int m = max (i++, j++);

Ausgabe
i: 18
j: 43
m: 42

Hinweis - der Compiler ist nicht gezwungen eine mit inline-deklarierte Funktion an der
Aufrufstelle zu expandieren. Dieses Schllsselwort ist nur eine Bitte bzw. ein Hinweis an den
Compiler. Dem Compiler ist es freigestellt einen Funktionsaufruf nicht zu inlinen bzw. nur
einen Teil der Aufrufe zu inlinen.

Praxis - damit der Compiler die Funktion bei der Compilation des Aufrufs expandieren kann,
muss er zu diesem Zeitpunkt den Code der inline-Funktion kennen. Daher werden inline-
Funktionen fast immer in den Header-Dateien implementiert.

15.8.3 Element-Funktionen

Viele Funktionen in einem gut designten C++ Programm sind sehr kurz, und damit ideale
Kandidaten fur inline-Funktionen. Z.B. sind durch einfache Zugriffsfunktionen die Daten
sauber gekapselt, aber jeder Zugriff flihrt zu einem kleinen Overhead: dem Funktions-Aufruf.

In Bezug auf inline sind Element-Funktionen ganz normale Funktionen:

e entweder schreiben sie das Schlisselwort inline vor Deklaration und Definition, oder

¢ sie implementieren die Definition direkt in der Klassen-Definition (in diesem Fall ist das
Schlusselwort gar inline nicht nétig - dies wird auch ,impliztes Inline“ genannt - s.u.

class date

{

public:
int day() const { return day ; } // implizites inline ohne Semikolon
int month() const { return month ; }; // implizites inline mit Semikolon
inline int year () const; // explizites inline

// Rest wie bisher...

}i

inline void date::year() const
{
return year ;

}

Bemerkung - werden Element-Funktionen direkt in der Klassendefiniton definiert, so erlaubt
die Syntax von C++, dass das abschliessende Semikolon wegfallen kann, da die
abschliessende geschweifte Klammer die Definition eindeutig beendet — siehe Beispiel.

Hinweis - dies gilt auch fur spezielle Element-Funktionen wie z.B. Konstruktoren,
Destruktoren oder Operatoren, auch z.B. in Verbindung mit ,virtual“ oder
Initialisierungslisten.

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 8 — Version 1 Seite 11/14

15.8.4 Implizites Inline bei freien Funktionen

Neben dem impliziten Inline von Element-Funktionen gibt es einen weiteren Fall von
implizitem Inline bei freien Funktionen: kennt der Compiler beim Compilieren eines
Funktions-Aufrufs die Funktions-Definition, so darf er sie inline expandieren, auch wenn sie
nicht so deklariert ist.

Da stellt sich sofort die Frage, was das SchllUsselwort inline eigentlich soll, wenn der
Compiler eine Funktion eh automatisch inline expandieren kann, sobald er ihre
Implementierung kennt? Denn genau das ist ja auch die Voraussetzung, dass inline
Uberhaupt funktionieren kann.

Wirde die Funktion aber nicht inline deklariert, so ware sie schnell mehrfach im Programm
definiert, was zu Linker-Fehlern flhren wirde.

XA

e

VJ/'V(J?()/Z(E
’ NAcpp

i ‘. i /gb/;'/)/w

/X.Qk@

Abb. 15-1 : Linker-Fehler bei Funktionen im Header ohne ,,inline“

Bzgl. der Link-Spezifikation sorgen inline-Funktionen fir eine sogenannte interne Link-
Spezifikation, d.h. die Funktion wird nicht aus dem Objekt-File exportiert. Trotzdem muss das
Compiler/Linker-Gespann daflr sorgen, dass die gesamte normale Funktions-Semantik

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 8 — Version 1 Seite 12/14

vollstandig erhalten bleibt (dies betrifft Themen, die wir noch nicht kennen, z.B. Funktions-
Adressen, oder static Funktions-Variablen).

15.9 Bibliotheken

15.9.1 Was ist eine Bibliothek?

Nehmen wir an, jemand programmiert einige schdne Dinge, die von allgemeinem Interesse
sind. Z.B. eine Sammlung von Klassen und Funktionen zur Verwaltung, Darstellung,
Manipulation, Anzeige, usw. von Daten, Zeiten, Zeitstempeln, usw.

Die komplette Implementierung besteht sicher aus einigen Header- und einigen
Implementierungs-Dateien, z.B.

e date.h und date.cpp

e time.h und time.cpp

o utils.h und utils.cpp

Wollen sie diese Dinge nun in einem Projekt von ihnen nutzen, so gibt es eine einfache
Maglichkeit: ,ihnen werden die Header und Implementierungen zur Verfigung gestellt, und
sie binden diese Dateien ganz normal in ihr Projekt ein“. Dies ist aber keine schone
Vorgehensweise, da sie nun das gesamte Handling vieler fremder Dateien gewonnen haben.
Und eigentlich interessiert sie die Implementierung und all das Drumherum doch gar nicht,
sie wollen das doch einfach nur nutzen. Au3erdem kann es sein, dass der Implementierer
ihnen seine Implementierung nicht geben will, da sie hochgeheime Algorithmen enthalten.
Was dann?

Die Header muss er ihnen immer geben. Das geht nicht anders, denn die Header enthalten
alle Deklarationen und Definitionen, die der Compiler benétigt um den Code zu compilieren.

Statt der Source-Dateien kdnnte er ihnen aber auch die Objekt-Dateien geben. Dann
brauchten sie die Sourcen nicht mehr zu compilieren, und der Implementierer muss seine
Sourcen nicht herausgeben.

Aber auch das Handling vieler hunderter Objekt-Dateien ist nicht wirklich angenehm —
schoner ware doch eine einzige Datei, die den Inhalt aller Objekt-Dateien enthalt. Und
genau dies ist eine Bibliothek. Es ist eine Datei, die die vollstandige Implementierung enthalt,
und vom Linker zu ihrem Programm dazugebunden werden kann.

Achtung — spatestens mit den Bibliotheken haben wir den Rahmen von ISO C++ komplett
verlassen. Der Standard kennt den Begriff einer Bibliothek oder einer Library in diesem
Sinne nicht, und aulert sich auch nicht zu dieser Thema. Er beschrankt sich vollstandig auf
die Sprache und die Standard-Bibliothek. Praktische Dinge wie eben auch die Erstellung und
Benutzung von Bibliotheken werden von ihm zurzeit vollkommen ausgeklammert, und sind
dem entsprechend auch sehr plattform- und compiler-spezifisch.

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 8 — Version 1 Seite 13/ 14

Hinweis — in der Praxis gibt es statische und dynamische Bibliotheken. All dies ist
interessant und auch sehr wichtig, Ubersteigt den Rahmen der Vorlesung aber bei weitem.

Was mussen sie also nun machen, wenn sie:
1. eine fremde Bibliothek nutzen wollen, bzw.
2. eine eigene Bibliothek schreiben wollen?

15.9.2 Fremde Bibliothek nutzen

Mit dem Wissen dieses Kapitels sollte ihnen jetzt klar sein, dass eine fremde Bibliothek im
Normalfall zwei Dinge mitbringt:

e Header, die sie zum compilieren bendtigen

e und einer Bibliotheks-Datei, die sie beim Linken angeben mussen.

Im Einzelfall kann eine Bibliothek nattrlich noch andere Dinge enthalten, und sie kann
natUrlich auch aus mehreren Bibliotheks-Dateien bestehen. Aber konzeptionell kann man
sich das so vorstellen.

Die Header — typischerweise in einem Verzeichnis gruppiert — legen sie an eine allgemeine
Stelle in ihre Verzeichnis-Struktur, und geben diesen Pfad fir den Compiler an. Die
Bibliotheks-Datei legen sie z.B. neben die Header, und geben diese beim Linken mit an.

Bei vielen IDE's kdnnen sie sowohl allgemeine als auch projekt-spezifische Header und

Bibliotheken angeben. Allgemeine stellen sie einmal in der IDE ein, und sie stehen damit
automatisch fur alle Projekte zur Verfligung. Dies empfiehlt sich fir Bibliotheken, die sie

haufig bis immer benutzen. Andere Bibliotheken benutzen sie nur manchmal, und diese

sollten dann projekt-spezifisch hinzugefigt werden.

Hinweis — fir die Standard-Bibliothek mussen sie sich um nichts kimmern. diese Header
und Bibliotheks-Dateien sind dem Compiler und Linker automatisch per Default bekannt.
Nichtsdestotrotz kann man sie natirlich in der Praxis auch andern, d.h. dem Compiler bzw.
Linker eine andere Standard-Bibliothek mitgeben.

Achtung — manche Bibliotheken haben keine explizite Bibliotheks-Datei. Dies ist dann der
Fall, wenn alle Definitionen in den Headern vorhanden sind. Dies passiert haufig im
Zusammenhang mit inline-Funktionen und vor allem Templates. Ein Beispiel dafir sind
grol3e Teile der Boost-Bibliotheken, bei denen sie nur die Header angeben mussen, und sie
damit fertig sind.

15.9.3 Eigene Bibliotheken erstellen

Um eigene Bibliotheken zu erstellen, missen Sie dem Compiler/Linker einfach nur angeben,
dass Sie kein Programm, sondern eben eine Bibliothek erstellen wollen. Als Ergebnis
erhalten Sie dann eben kein Executable, sondern eben eine Bibliotheks-Datei. Die jeweilige

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 8 — Version 1 Seite 14/ 14

Target-Angabe ist natirlich compiler-spezifisch.

Achtung — in einer Bibliothek sollte im Normalifall nattrlich keine Main-Funktion vorhanden
sein, da Sie das Programm ja weiterhin selbst schreiben wollen.

© Detlef Wilkening 2025 www.wilkening-online.de

