
Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 8 – Version 1 Seite 1 / 14

© Detlef Wilkening 2025 www.wilkening-online.de

Vorlesung

Objektorientiertes

Programmieren

in

C++

Teil 8 - WS 2025/26

Detlef Wilkening

www.wilkening-online.de

© 2025

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 8 – Version 1 Seite 2 / 14

© Detlef Wilkening 2025 www.wilkening-online.de

15 Präprozessor, Compiler, Linker, ... 2

15.1 Quelltext-Aufteilung, Header, Sourcen.. 2

15.2 Präprozessor.. 3

15.3 Compiler... 4

15.4 Linker ... 6

15.5 Fehler ... 7

15.6 ODR und Header-Guards .. 8

15.7 Quelltext-Aufteilung ... 9

15.8 Inline... 9

15.9 Bibliotheken ... 12

15 Präprozessor, Compiler, Linker, ...
Bislang haben wir immer den gesamten Quelltext in eine Datei geschrieben. Das wird

langsam unübersichtlich, und außerdem lässt sich so ja nichts wiederverwenden – darum

soll das jetzt geändert werden. Leider betreten wir damit den noch dunkelsten Bereich von

C++. C++ implementiert die Aufteilung des Codes auf mehrere Dateien u.a. mit sogenannten

Header-Dateien, die dann von dem sogenannten Präprozessor zur eigentlichen

Übersetzungs-Einheit vorverarbeitet werden. Wir werden dies in den nächsten Kapiteln im

Detail besprechen. Aus heutiger Sicht ist dies kein modernes Verfahren mehr. Mit C++20

führt C++ Module ein, die die Header ablösen sollen. Aber C++20 ist gerade erst erschienen,

und in der Praxis kenne ich keine Bibliothek und kein Projekt, das auf C++20 Module

aufsetzt. Selbst die C++ Standard-Bibliothek selber liegt noch nicht in Modulen vor – dies ist

erst für C++23 vorgesehen. Von daher werden wir uns in der Praxis noch jahrelang mit

Headern rumschlagen müssen – darum besprechen wir nur diese.

15.1 Quelltext-Aufteilung, Header, Sourcen

Um zu überlegen, wie eine Aufteilung aussehen kann, lassen sie uns anschauen, welche

„Schnittstellen-Elemente“ wir bislang kennen, und was für ihre Implementierung bzw. ihre

Benutzung benötigt werden.

Unter dem Begriff „Schnittstellen-Elemente“ verstehen wir hier alle Elemente, die wir in

unserem Code benutzen um ihn zu schreiben, also nach unserem augenblicklichen

Wissenstand: Konstanten, Typen (Typ-Aliase, Aufzählungstypen, Klassen) und Funktionen.

Schnittstellen-Element Benötigt mindestens

Konstanten

 Deklaration ---

 Def inition ---

 Benutzung Deklaration (oder Def inition – je nachdem)

Typ-Aliase

 Def inition ---

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 8 – Version 1 Seite 3 / 14

© Detlef Wilkening 2025 www.wilkening-online.de

 Benutzung Def inition

Aufzählungstypen

 Def inition ---

 Benutzung Def inition

Funktionen (freie)

 Deklaration ---

 Def inition (Implementierung) ---

 Benutzung Deklaration

Klassen

 Deklaration (s.u.) ---

 Def inition ---

 Implementierung (Element-Funktionen) Klassen-Def inition

 Benutzung Klassen-Def inition

Hiermit ist sofort offensichtlich, welche Dinge für die Benutzung der Schnittstellen-Elemente

benötigt werden:

• Konstanten-Deklarationen oder –Definitionen

• Typ-Alias-Definitionen

• Enum-Definitionen

• Deklarationen von freien Funktionen

• Klassen-Definitionen

Wenn wir diese Dinge in extra Dateien legen könnten, bräuchten wir nur noch einen

Mechanismus, der sie in einer anderen Datei bekannt macht. Dann könnten wir sie

problemlos in unseren Quelltexten verwenden. Einen solchen Mechanismus gibt es in C++ in

Form des Präprozessors mit der „include“-Anweisung – siehe nächstes Kapitel.

Diese Extra-Dateien für die Schnittstellen-Elemente nennt man in C++ Header, und sie

haben typischerweise die Endung „*h“ oder „.hpp“. Alle C++ Header haben keine Endung.

Die Dateien mit den Implementierungen werden häufig Source-Dateien oder kurz Sourcen

genannt, obwohl natürlich auch die Header Source-Code enthalten. Source-Dateien haben

typischerweise die Endung „.cpp“ oder „.cc“.

Außerdem zeigt die Tabelle direkt, dass es wohl möglich sein könnte, die Implementierungen

(Definition) der freien Funktionen und der Element-Funktionen in eigene Quelltexte

auszulagern, denn diese werden für die Benutzung nicht benötigt. Dann stellt sich nur die

Frage, wie einzelne unabhängige Quelltexte übersetzt (compiliert) werden, und für das

eigentliche Ergebnis (das ausführbare Programm) zusammengeführt werden? Dies wird

durch Compiler und Linker in C++ gemacht – siehe weiter unten.

15.2 Präprozessor

In C++ gibt es einen sogenannten Präprozessor, der am Anfang eines Compilevorgangs

über den Quelltext läuft und alle Präprozessor Anweisungen verarbeitet. Präprozessor

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 8 – Version 1 Seite 4 / 14

© Detlef Wilkening 2025 www.wilkening-online.de

Anweisungen sind alle die mit einem „#“ beginnen - augenblicklich kennen wir nur die include

Anweisung „#include“.

Der Präprozessor ist ein ziemlich dummes Programm und macht eigentlich nichts anderes

als einen etwas intelligenteren Textersatz (eine Art Suchen & Ersetzen).

Im Falle der include Anweisung sucht er in den sogenannten Include-Pfaden nach der

entsprechenden Datei, fügt sie quasi 1:1 in unseren Quelltext ein, und speichert das

Ergebnis als temporäre Datei (die bildet dann den eigentlichen Input für den Compiler).

Original-Dateien Präprozessor macht daraus temporäre Datei „y.tmp“

// Datei x.h

void f1();

void f2(int);

// Datei y.cpp

#include "x.h"

void g()

{

 ...

 f1();

 ...

}

 => void f1();

void f2(int);

void g()

{

 ...

 f1();

 ...

}

Der Präprozessor unterstützt zwei Arten von Include’s:

• #include <header>

• #include "header"

Der Unterschied zwischen den beiden Includes ist die Suchstrategie nach den Dateien im

Include-Pfad – auf Details soll hier aus Zeitmangel nicht eingegangen werden. Aus

Faustregel kann man sagen: benutzen sie für die System-Header die <...> Variante, und für

ihre eigenen Header die "..." Variante.

Bemerkung – es gibt noch viele weitere Präprozessor-Anweisungen – zwei weitere werden

wir gleich im Kapitel über Header-Guards noch kennen lernen. Aber im Rahmen der

Vorlesung war‘s das dann auch. In C++ ist der Präprozessor auch nicht mehr so wichtig wie

in C, da in C++ viele typische C- Präprozessor Aufgaben durch leistungsfähigere C++

Sprachmittel übernommen werden.

15.3 Compiler

Der Compiler bekommt als Input den temporären Output des Präprozessors – in der Praxis

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 8 – Version 1 Seite 5 / 14

© Detlef Wilkening 2025 www.wilkening-online.de

sieht man dies normalerweise nicht, es läuft transparent im Hintergrund ab. Aber in der

Praxis hat auch jeder Entwicklungsumgebung eine Möglichkeit, sich den Präprozessor-

Output anzuschauen.

Der Compiler übersetzt jetzt den Quelltext in Maschinencode – der Output des Compilers

sind Objekt-Files, die unter Windows meist die Endung „*.obj“ und unter Linux meist „*.o“

haben. Ein Object-File ist noch kein ausführbares Programm, sondern nur der in

Maschinensprache übersetzte Code eines Quelltexts.

Temporäre Datei „y.tmp“ Compiler macht daraus das Object-File „y.obj“

void f1();

void f2(int);

void g()

{

 ...

 f1();

 ...

}

 => 100101101110111001010101010

101010000111101011100010000

1 ... 110100010011

Hierbei sind mehrere Dinge wichtig:

• Jeder Übersetzungsvorgang, d.h. der Durchlauf von Präprozessor und Compiler, ist

vollkommen unabhängig von anderen. Ein Compiler schaut nie nach links und rechts (in

andere Dateien), selbst wenn er dann Dinge wissen könnte, die ihm helfen würden.

• Ein Compiler kümmert sich nicht um Vollständigkeit des Programms – im obigen Beispiel

interessiert ihn nicht ob die Funktion „f1“ irgendwo implementiert ist, auch wenn sie

benutzt wird. Da sie deklariert ist (Das ist immerhin das Versprechen dass es sie geben

sollte!), ist die Benutzung für ihn definiert, und er compiliert den Quelltext.

• Ein Compiler kümmert sich nicht um unbenutzte Deklarationen und Definitionen. Im

obigen Beispiel ist „f2“ deklariert, wird aber nicht benutzt. Dem Compiler ist das egal.

Ein Object-File kann noch kein ausführbares Programm sein, da meistens noch einige Dinge

fehlen: all die deklarierten Dinge, die benutzt worden sind. Im Beispiel die Funktion „f1“. Der

Compiler lässt an dieser Stelle im Maschinencode Platz für die echte Adresse, und schreibt

in die sogenannte Import-Tabelle, was noch benötigt wird.

Außerdem erstellt der Compiler eine sogenannte Export-Tabelle, in der alle Symbole stehen,

die in diesem Object-File implementiert worden sind.

Das eigentliche Object-File „y.obj“ sieht also ungefähr folgendermassen aus:

Import

 Adr Symbol

 0000:0062 void f1()

Export

 Adr Symbol

 0000:0040 void g()

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 8 – Version 1 Seite 6 / 14

© Detlef Wilkening 2025 www.wilkening-online.de

Code

 Adr Maschinencode Pseudocode Originalcode

 0000:0000

 0000:0040 3F 7E movem do-d4, sp void g()

 0000:0060 B3 C2 00 00 00 00 call f1 f1()

 0000:0080 A2 44 ret return

15.4 Linker

Der Linker hat nun die Aufgabe, aus all den Object-Files das ausführbare Programm

zusammen zu setzen. Dazu muss er im einfachsten Fall:

• Die Code-Segmente aller Object-Files zusammenbinden

• Alle offenen Adressen (Import-Einträge) auflösen

• Die C++ Laufzeitumgebung dazubinden (Standard-Bibliothek und allgemeine Dinge, die

zum Ablauf des Programms benötigt werden).

• Das Programm in einer Form abspeichern, die das OS auswerten kann.

Schauen wir uns das mal an einem Beispiel an: gehen wir mal davon aus, dass es neben

dem Quelltext „y.cpp“ von oben noch eine Datei „z.cpp“ gibt, die folgenden Inhalt hat:

// Datei z.cpp

void g();

void f1()

{

 ...

}

int main()

{

 ...

 g();

 ...

 g();

 ...

 return 0;

}

Hieraus erzeugt das Gespann Präprozessor/Compiler folgende Objekt-Datei „z.obj“:

Import

 Adr Symbol

 0000:0132 void g()

 0000:0142 void g()

Export

 Adr Symbol

 0000:0100 void f1()

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 8 – Version 1 Seite 7 / 14

© Detlef Wilkening 2025 www.wilkening-online.de

Code

 Adr Maschinencode Pseudocode Originalcode

 0000:0000

 0000:0100 3F 86 movem a0-a1, sp void f1()

 0000:0110 A2 44 ret return

 0000:0120 3F 92 movem a0-a7, sp int main()

 0000:0130 B3 C2 00 00 00 00 call g g()

 0000:0140 B3 C2 00 00 00 00 call g g()

 0000:0150 A2 44 00 00 00 00 ret 0 return 0

Der Linker fügt die beiden Objekt-Dateien jetzt zu einem lauffähigen Programm zusammen,

und löst dabei alle Referenzen (hier „f1“ und „g“) auf.

Code

 Adr Maschinencode Pseudocode Originalcode

 0000:0000

 0000:0010 3F 86 movem a0-a1, sp void f1()

 0000:0020 A2 44 ret return

 0000:0030 3F 92 movem a0-a7, sp int main()

 0000:0040 B3 C2 00 00 00 70 call g g()

 0000:0050 B3 C2 00 00 00 70 call g g()

 0000:0060 A2 44 00 00 00 00 ret 0 return 0

 0000:0070 3F 7E movem do-d4, sp void g()

 0000:0090 B3 C2 00 00 00 10 call f1 f1()

 0000:00B0 A2 44 ret return

Hinweis – in Wirklichkeit ist da noch etwas mehr zu machen, und die Adressen dürfen z.B.

vom Linker noch gar nicht endgültig eingetragen werden – das macht erst der Loader des

OS. Aber vom Prinzip her funktioniert das alles so.

15.5 Fehler

Wenn sie Compilerfehler bekommen, dann haben sie in der entsprechenden Datei (bzw. in

den von ihr eingebundenen Dateien) einen syntaktischen Fehler gemacht.

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 8 – Version 1 Seite 8 / 14

© Detlef Wilkening 2025 www.wilkening-online.de

Wenn sie Linkerfehler bekommen, dann sind alle ihre Dateien syntaktisch in Ordnung, aber

die Auflösung der Symbole klappt nicht – typische Fehler:

• Symbol nicht vorhanden, d.h. sie haben ein Symbol deklariert und benutzt, aber

nirgendswo implementiert.

• Symbol mehrfach vorhanden, d.h. sie haben ein Symbol mehrfach implementiert

(zumindest sieht der Linker das so – siehe auch die Diskussion bei inline Funktionen

weiter unten).

15.6 ODR und Header-Guards

Eine Sache muss noch geklärt werden – die ODR und ihre Konsequenzen. In C++ gibt es

die sogenannte ODR „One-Definition-Rule“, die einfach nur besagt, dass eine Definition in

einer Übersetzungseinheit nur einmal vorkommen darf. Auch wenn die Definition beim

zweiten Mal identisch zur ersten ist, ist dies ein Compilerfehler.

Nun gut, aber wo ist das Problem?

Durch indirektes includieren kann es leicht passieren, das Definitionen doppelt in

Übersetzungseinheiten vorhanden sein. Darum sollte in jedem Header ein sogenannter

Header-Guard vorhanden sein.

// Header "x.h"

#ifndef X_H

#define X_H

class x

{

};

#endif

Ein Header-Guard besteht aus mehreren Präprozessor-Anweisungen.

• Die Anweisung „#ifndef X_H“ fragt ab, ob das Präprozessor-Makro „X_H“ nicht definiert

ist. Wenn es nicht definiert ist, dann wird der Präprozessor-If-Block betreten – der enthält

dann den normalen Header-Inhalt.

• Zuerst wird das Präprozessor-Makro „X_H“ aber definiert – mit der Anweisung „#define

X_H“.

• Beendet wird der Präprozessor-If-Block betreten mit der Anweisung „#endif“.

Wird der Header „x.h“ jetzt zweimal eingebunden, dann wird er beim ersten Einbinden ganz

normal vollständig includiert, da das Makro nicht definiert ist – aber es wird jetzt auch

definiert. Bei weiteren Includes ist das Makro nun aber definiert, und daher weist die

Anweisung „#ifndef X_H“ den Präprozessor ab, und der Präprozessor-If-Block wird kein

weiteres Mal eingebunden. Ergebnis: die Definiton ist nur einmal vorhanden, die ODR ist

erfüllt.

Damit Header-Guard-Makros eindeutig sind, gibt es eine einfache Konvention für ihre

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 8 – Version 1 Seite 9 / 14

© Detlef Wilkening 2025 www.wilkening-online.de

Benamsung:

• Header-Guard-Makros werden – wie alle Präprozessor-Makros – per Konvention

GROSS geschrieben.

• Header-Guard-Makros entsprechen dem Namen der Datei, möglicherweise inklusive

Verzeichnis-Namen (bei verschachtelten Strukturen).

• Die Namensteile von Header-Guard-Makros werden durch „_“ getrennt.

• An das Header-Guard-Makro wird noch der Postfix „_H“ angehängt.

Achtung – leider recht verbreitet, aber trotzdem gefährlich und falsch, ist die Konvention

dem Header-Guard-Makro noch das Präfix „_“ oder „__“ vorzustellen. Ein solcher

Makroname – z.B. „_X_H“ bzw. „__X_H“ – ist in C++ reserviert!

• Namen mit einem Underscore am Anfang sind für den Compiler und die

Entwicklungsumgebung reserviert.

• Namen mit zwei Underscore am Anfang sind für die Sprache reserviert – z.B. „__FILE__“

oder „__LINE__“.

15.7 Quelltext-Aufteilung

Pro „logischem Modul“ (z.B. einzelne Klasse mit möglicherweise zugehörigen freien

Funktionen) sollte es einen Header und eine Implementierungs-Datei geben.

Der Header enthält Konstanten, Typ-Defintionen (Typedef’s, Enums, Klassen,...) und

Deklarationen der freien Funktionen. Die Implementierungs-Datei includiert als erstes den

Header und enthält die Implementierungen der Element-Funktionen und freien Funktionen

des Headers.

15.8 Inline

15.8.1 Thema „Performance“

C++ hat u. a. das Ziel: effizienter Code, schnelle Programme.

Selbst wenn Funktionsaufrufe in C++ nicht viel Zeit kosten, so bergen sie doch immer einen

gewissen Overhead in sich. Gerade bei sehr kleinen einfachen Funktionen kann dieser

Overhead einen nicht vernachlässigbaren Anteil darstellen.

In C++ gibt es inline-Funktionen, die ganz normale Funktionen sind, aber vom Compiler

direkt an der Aufrufstelle expandiert werden können. Dabei wird die normale Semantik von

Funktions-Aufrufen vollständig gewahrt.

15.8.2 Freie Funktionen

Um eine Funktion inline zu machen, schreiben Sie das Schlüsselwort inline vor die

Funktions-Deklaration und -Definition.

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 8 – Version 1 Seite 10 / 14

© Detlef Wilkening 2025 www.wilkening-online.de

inline int max(int, int);

inline int max(int a, int b)

{

 return a>b ? a: b;

}

int m = max(i++, j++);

Ausgabe

i: 18

j: 43

m: 42

Hinweis - der Compiler ist nicht gezwungen eine mit inline-deklarierte Funktion an der

Aufrufstelle zu expandieren. Dieses Schlüsselwort ist nur eine Bitte bzw. ein Hinweis an den

Compiler. Dem Compiler ist es freigestellt einen Funktionsaufruf nicht zu inlinen bzw. nur

einen Teil der Aufrufe zu inlinen.

Praxis - damit der Compiler die Funktion bei der Compilation des Aufrufs expandieren kann,

muss er zu diesem Zeitpunkt den Code der inline-Funktion kennen. Daher werden inline-

Funktionen fast immer in den Header-Dateien implementiert.

15.8.3 Element-Funktionen

Viele Funktionen in einem gut designten C++ Programm sind sehr kurz, und damit ideale

Kandidaten für inline-Funktionen. Z.B. sind durch einfache Zugriffsfunktionen die Daten

sauber gekapselt, aber jeder Zugriff führt zu einem kleinen Overhead: dem Funktions-Aufruf.

In Bezug auf inline sind Element-Funktionen ganz normale Funktionen:

• entweder schreiben sie das Schlüsselwort inline vor Deklaration und Definition, oder

• sie implementieren die Definition direkt in der Klassen-Definition (in diesem Fall ist das

Schlüsselwort gar inline nicht nötig - dies wird auch „impliztes Inline“ genannt - s.u.

class date

{

public:

 int day() const { return day_; } // implizites inline ohne Semikolon

 int month() const { return month_; }; // implizites inline mit Semikolon

 inline int year() const; // explizites inline

 // Rest wie bisher...

};

inline void date::year() const

{

 return year_;

}

Bemerkung - werden Element-Funktionen direkt in der Klassendefiniton definiert, so erlaubt

die Syntax von C++, dass das abschliessende Semikolon wegfallen kann, da die

abschliessende geschweifte Klammer die Definition eindeutig beendet – siehe Beispiel.

Hinweis - dies gilt auch für spezielle Element-Funktionen wie z.B. Konstruktoren,

Destruktoren oder Operatoren, auch z.B. in Verbindung mit „virtual“ oder

Initialisierungslisten.

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 8 – Version 1 Seite 11 / 14

© Detlef Wilkening 2025 www.wilkening-online.de

15.8.4 Implizites Inline bei freien Funktionen

Neben dem impliziten Inline von Element-Funktionen gibt es einen weiteren Fall von

implizitem Inline bei freien Funktionen: kennt der Compiler beim Compilieren eines

Funktions-Aufrufs die Funktions-Definition, so darf er sie inline expandieren, auch wenn sie

nicht so deklariert ist.

Da stellt sich sofort die Frage, was das Schlüsselwort inline eigentlich soll, wenn der

Compiler eine Funktion eh automatisch inline expandieren kann, sobald er ihre

Implementierung kennt? Denn genau das ist ja auch die Voraussetzung, dass inline

überhaupt funktionieren kann.

Würde die Funktion aber nicht inline deklariert, so wäre sie schnell mehrfach im Programm

definiert, was zu Linker-Fehlern führen würde.

Abb. 15-1 : Linker-Fehler bei Funktionen im Header ohne „inline“

Bzgl. der Link-Spezifikation sorgen inline-Funktionen für eine sogenannte interne Link-

Spezifikation, d.h. die Funktion wird nicht aus dem Objekt-File exportiert. Trotzdem muss das

Compiler/Linker-Gespann dafür sorgen, dass die gesamte normale Funktions-Semantik

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 8 – Version 1 Seite 12 / 14

© Detlef Wilkening 2025 www.wilkening-online.de

vollständig erhalten bleibt (dies betrifft Themen, die wir noch nicht kennen, z.B. Funktions-

Adressen, oder static Funktions-Variablen).

15.9 Bibliotheken

15.9.1 Was ist eine Bibliothek?

Nehmen wir an, jemand programmiert einige schöne Dinge, die von allgemeinem Interesse

sind. Z.B. eine Sammlung von Klassen und Funktionen zur Verwaltung, Darstellung,

Manipulation, Anzeige, usw. von Daten, Zeiten, Zeitstempeln, usw.

Die komplette Implementierung besteht sicher aus einigen Header- und einigen

Implementierungs-Dateien, z.B.

• date.h und date.cpp

• time.h und time.cpp

• utils.h und utils.cpp

Wollen sie diese Dinge nun in einem Projekt von ihnen nutzen, so gibt es eine einfache

Möglichkeit: „ihnen werden die Header und Implementierungen zur Verfügung gestellt, und

sie binden diese Dateien ganz normal in ihr Projekt ein“. Dies ist aber keine schöne

Vorgehensweise, da sie nun das gesamte Handling vieler fremder Dateien gewonnen haben.

Und eigentlich interessiert sie die Implementierung und all das Drumherum doch gar nicht,

sie wollen das doch einfach nur nutzen. Außerdem kann es sein, dass der Implementierer

ihnen seine Implementierung nicht geben will, da sie hochgeheime Algorithmen enthalten.

Was dann?

Die Header muss er ihnen immer geben. Das geht nicht anders, denn die Header enthalten

alle Deklarationen und Definitionen, die der Compiler benötigt um den Code zu compilieren.

Statt der Source-Dateien könnte er ihnen aber auch die Objekt-Dateien geben. Dann

bräuchten sie die Sourcen nicht mehr zu compilieren, und der Implementierer muss seine

Sourcen nicht herausgeben.

Aber auch das Handling vieler hunderter Objekt-Dateien ist nicht wirklich angenehm –

schöner wäre doch eine einzige Datei, die den Inhalt aller Objekt-Dateien enthält. Und

genau dies ist eine Bibliothek. Es ist eine Datei, die die vollständige Implementierung enthält,

und vom Linker zu ihrem Programm dazugebunden werden kann.

Achtung – spätestens mit den Bibliotheken haben wir den Rahmen von ISO C++ komplett

verlassen. Der Standard kennt den Begriff einer Bibliothek oder einer Library in diesem

Sinne nicht, und äußert sich auch nicht zu dieser Thema. Er beschränkt sich vollständig auf

die Sprache und die Standard-Bibliothek. Praktische Dinge wie eben auch die Erstellung und

Benutzung von Bibliotheken werden von ihm zurzeit vollkommen ausgeklammert, und sind

dem entsprechend auch sehr plattform- und compiler-spezifisch.

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 8 – Version 1 Seite 13 / 14

© Detlef Wilkening 2025 www.wilkening-online.de

Hinweis – in der Praxis gibt es statische und dynamische Bibliotheken. All dies ist

interessant und auch sehr wichtig, übersteigt den Rahmen der Vorlesung aber bei weitem.

Was müssen sie also nun machen, wenn sie:

1. eine fremde Bibliothek nutzen wollen, bzw.

2. eine eigene Bibliothek schreiben wollen?

15.9.2 Fremde Bibliothek nutzen

Mit dem Wissen dieses Kapitels sollte ihnen jetzt klar sein, dass eine fremde Bibliothek im

Normalfall zwei Dinge mitbringt:

• Header, die sie zum compilieren benötigen

• und einer Bibliotheks-Datei, die sie beim Linken angeben müssen.

Im Einzelfall kann eine Bibliothek natürlich noch andere Dinge enthalten, und sie kann

natürlich auch aus mehreren Bibliotheks-Dateien bestehen. Aber konzeptionell kann man

sich das so vorstellen.

Die Header – typischerweise in einem Verzeichnis gruppiert – legen sie an eine allgemeine

Stelle in ihre Verzeichnis-Struktur, und geben diesen Pfad für den Compiler an. Die

Bibliotheks-Datei legen sie z.B. neben die Header, und geben diese beim Linken mit an.

Bei vielen IDE`s können sie sowohl allgemeine als auch projekt-spezifische Header und

Bibliotheken angeben. Allgemeine stellen sie einmal in der IDE ein, und sie stehen damit

automatisch für alle Projekte zur Verfügung. Dies empfiehlt sich für Bibliotheken, die sie

häufig bis immer benutzen. Andere Bibliotheken benutzen sie nur manchmal, und diese

sollten dann projekt-spezifisch hinzugefügt werden.

Hinweis – für die Standard-Bibliothek müssen sie sich um nichts kümmern. diese Header

und Bibliotheks-Dateien sind dem Compiler und Linker automatisch per Default bekannt.

Nichtsdestotrotz kann man sie natürlich in der Praxis auch ändern, d.h. dem Compiler bzw.

Linker eine andere Standard-Bibliothek mitgeben.

Achtung – manche Bibliotheken haben keine explizite Bibliotheks-Datei. Dies ist dann der

Fall, wenn alle Definitionen in den Headern vorhanden sind. Dies passiert häufig im

Zusammenhang mit inline-Funktionen und vor allem Templates. Ein Beispiel dafür sind

große Teile der Boost-Bibliotheken, bei denen sie nur die Header angeben müssen, und sie

damit fertig sind.

15.9.3 Eigene Bibliotheken erstellen

Um eigene Bibliotheken zu erstellen, müssen Sie dem Compiler/Linker einfach nur angeben,

dass Sie kein Programm, sondern eben eine Bibliothek erstellen wollen. Als Ergebnis

erhalten Sie dann eben kein Executable, sondern eben eine Bibliotheks-Datei. Die jeweilige

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 8 – Version 1 Seite 14 / 14

© Detlef Wilkening 2025 www.wilkening-online.de

Target-Angabe ist natürlich compiler-spezifisch.

Achtung – in einer Bibliothek sollte im Normallfall natürlich keine Main-Funktion vorhanden

sein, da Sie das Programm ja weiterhin selbst schreiben wollen.

