Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 9 — Version 1 Seite 1/15

Vorlesung

Objektorientiertes
Programmieren
in
C++

Teil 9 - WS 2025/26

Detlef Wilkening
www.wilkening-online.de
© 2025

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 9 — Version 1 Seite 2/15

16 Operator-FUNKLIONEN..............eiiiiicccccccecc e e s smmn e e e e e s s mmmnn e e e e e e s 2
16.1 EINFURIUNG..... oottt e e e e e e e e e e e e e e e e e eeanaeeeeanns 2
16.2 Verstandnis BeISPIEeeiiiiiieiee e 6
16.3 Symmetrische OperatornUIZUNG...........cooiiieiiiieiiie e 6
16.4 AUSTADE ...ttt b et b e e aae e e aae e naeeeaa 7
16.5 Kopier-Zuweisungs-Operator =c..ooiiiiiiiei e e e e e e ee e e e neeeeeenns 10
16.6 MOVe-ZUWEISUNGS-OPErator =........cooiiiiiiiieiiie et e 12
16.7 FunKtionsS-AUfrUf OPErator..........cooi i e e 12
16.8 SPEZIANAIENeeeeeeeeeee e e e e arae e e 14
(LG I o4 | SOOI 15

16 Operator-Funktionen

,Lehnen Sie sich zurlick und entspannen Sie sich“ — so oder ahnlich kdnnte dieses Kapitel
heissen, denn prinzipiell bringt es fast gar nichts Neues. Lesen Sie Kapitel 16.1 —und Sie
wissen fast alles, was Sie wissen mussen. Nun gut, an einzelnen Stellen gibt es noch ein
paar Details zu beachten, aber meistens gibt es selbst diese Komplikationen nicht.

Aber warum weisse ich extra darauf hin?
Und warum ist dann das Kapitel nicht nur 2 Seiten lang?

Das hat was mit meinen Erfahrungen zu tun — eigenen und fremden. Aus irgendeinem mir
unbekanntem Grund haben Operator-Funktionen das Stigma des Mystischen, des
Undurchschaubaren, des unheimlich Komplizierten — ich habe Leute kennengelernt, die seit
Jahren C++ programmierten und dabei schon recht abgedrehte Sachen machten, aber sich
nie getraut haben Operatoren zu Uberladen.

Woran das liegt? Keine Ahnung, denn in Wirklichkeit sind Operator-Funktionen gar nicht
kompliziert, ganz im Gegenteil. Aber scheinbar wirken sie so fremd, dass man erstmal die
Finger von ihnen Iasst.

Und warum ist das Kapitel dann soooooo lang? Genau genommen eigentlich nur, damit es
einige Details erklart und einige Beispiele enthalt.

Aber grundsatzlich gilt: keine Panik, dieses Kapitel ist wirklich halb so wild.

16.1 Einfuhrung

In einer fiktiven Klasse ,rational® (bruch) muften bislang mathematische Operationen als
Element-Funktionen abgebildet werden - z.B. um Brlche zu multiplizieren. Die mdglichen
Element-Funktionen waren z.B. ,mul“ fir die Multiplikation oder ,mul_assign® fur die
multiplikative Zuweisung, deren Verhalten der normalen Operator-Semantik von ,*=* bzw. ,**
z.B. bei Ints entsprechen wurden. Fur den Benutzer der Klassen ware es sicher
angenehmer, wenn er statt der Element-Funktionen diese Operatoren zur Verfigung hatte.

Bisheriges Wissen Schoner ware

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 9 — Version 1 Seite 3/15

rational rl, r2, r3; rational rl, r2, r3;
rl = r2.mul (r3); rl = r2*r3;

rational rl, r2; rational rl, r2;
rl.mul assign(r2); rl *= r2;

Hinweis —ich erlebe immer wieder, dass viele Einsteiger die Funktionalitaten wie die
~Multiplikation” oder die ,Multiplikative-Zuweisung*“ als freie Funktionen implementieren. Das
geht naturlich auch — selbst Klassen-Funktionen waren maglich — aber da die Funktionen
Zugriff auf die Attribute der Klasse benétigen und ja logisch zur Klasse gehéren, sind
Element-Funktionen meist die beste Wahl.

In C++ konnen die meisten der vorhandenen Operatoren liberladen werden. Ein
Operator ist im Prinzip eine ganz normale freie Funktion oder eine ganz normale
Element-Funktion - bis auf:

e Operatoren missen mit dem Schllsselwort operator und dem Operator selber als Name
deklariert und definiert werden.

e Es muss mindestens ein Parameter ein benutzerdefinierter Typ sein.

e Der Aufruf einer Operator-Funktion ist sowohl in Funktions-Schreibweise, als auch in
Operator-Schreibweise moglich — siehe folgendes Beispiel.

e Die Anzahl der Parameter ist durch den Operator festgelegt — Ausnahme Aufruf-Operator.
Z.B. der binare Operator ,+“ (die Addition) hat zwei Operanden — und das kdnnen Sie
nicht andern.

¢ Im Normalifall sind keine Default-Argumente zugelassen, da sie die syntaktische
Eindeutigkeit verletzen wirden (Ausnahme: Aufruf-Operator).

e Die genaue Syntax der Deklaration und Definition ist von der Verwendung der Operators
als freie Funktion oder als Element-Funktion abhangig.

Syntax
Dekl.: Ruckgabetyp operator @ (Parameterliste);
Def.: Ruckgabetyp operator @ (Parameterliste) { Funktionsrumpf }

oder Rilckgabetyp Klassen-Name::operator @ (Parameterliste) { Funktionsrumpf }

Hinweis — das ,@" steht hier flr der erlaubten Operatoren wie z.B. ,+* oder ,*“.

Implementieren wir als Beispiel die Multiplikation fur eine ganz einfache Bruch-Klasse
,rational“ — sowohl in der bisherige Form (Element-Funktion ,mul®) als auch in der neuen
Form (Element-Operator-Funktion ,*“).

Beispiel fir die Element-Operator-Funktion ,,**

#include <iostream>
using namespace std;

class rational

{

public:
rational (int n=0, int d=1) : numerator (n), denominator (d) ({}
rational mul (const rationalé&) const; // bisheriges Wissen

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 9 — Version 1 Seite 4/15

rational operator* (const rationalg&) const; // neues Wissen
void print () const { cout << numerator << L A denominator ; }

private:
int numerator , denominator ;

}i

// Man koennte die beiden Funtionen auch problemlos in einer Zeile implementieren.
// Hier ist es nicht geschehen, um klar zu zeigen, was in ihr passiert.

//

// So wuerden die Funktionen in einer Zeile aussehen:

// return rational (numerator * rhs.numerator , denominator * rhs.denominator);
//

// Ausserdem sind die Funktionen gute Kandidaten fuer inline-Funktionen.

// Bisheriges Wissen
rational rational::mul(const rational& rhs) const
{
int n = numerator * rhs.numerator ;
int d = denominator * rhs.denominator ;
rational result(n, d);
return result;

}

// Neues Wissen
rational rational::operator* (const rationalé& rhs) const
{

int n = numerator * rhs.numerator ;

int d = denominator * rhs.denominator ;

rational result(n, d);

return result;

}

int main ()
{
rational r, rl(2, 3), r2(4, 5);

r = rl.mul (r2); // Bisheriges Wissen
r.print();
cout << '"\n';

r = rl.operator*(r2) ; // Operator-Aufruf in Funktions-Schreibweise
r.print();
cout << '"\n';

r=rl* r2; // Operator-Aufruf in Operator-Schreibweise
r.print();
cout << '\n';

}

Ausgabe
8/15
8/15
8/15

Ich hoffe, Sie sehen wie gleich unsere bisherige Losung mit Element-Funktion ,mul”“ und die
neue Operator-Funktion ,*“ ist. Abgesehen vom Namen und dem mdglichen Aufruf in
Operator-Schreibweise gibt es keinen Unterschied.

Und da man den Operator ,*“ auch als freie Funktion implementieren kann, setzen wir auch
dies einmal um — sowohl fir eine normale freie Funktion ,mul” als auch fir eine freie
Operator-Funktion ,*“.

Beispiel fiir die freie Operator-Funktion ,,*“

#include <iostream>
using namespace std;

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 9 — Version 1

Seite

5/15

class rational
{
public:
rational (int n=0, int d=1) : numerator (n), denominator (d) ({}

// Jetzt benoetigen wir Getter fuer Zaehler und Nenner
// Oder wir machen die Funktionen zu Friends

int numerator () const { return numerator ; }

int denominator () const { return denominator ; }

void print () const { cout << numerator << '/' << denominator ; }

private:
int numerator , denominator ;

}i

// Deklarationen der freien Funktionen
rational mul (const rational&, const rationalég);
rational operator* (const rationalg&, const rationalé);

// - Definitionen der freien Funktionen
// - Die Implementierung waere natuerlich auch hier in einer Zeile moeglich:

// — Als 'friend' Funktion koennte man sich die Get-Funktionen sparen,
// was sicher sinnvoller waere.
// — Und natuerlich wieder ein super Kandidat fuer eine inline-Funktion.

rational mul (const rational& lhs, const rationalé& rhs)
{
int n = lhs.numerator() * rhs.numerator();
int d = lhs.denominator() * rhs.denominator() ;
rational result (n, d);
return result;

}

rational operator* (const rationalé& lhs, const rational& rhs)
{

int n = lhs.numerator() * rhs.numerator();

int d = lhs.denominator() * rhs.denominator();

rational result (n, d);

return result;

}

int main ()
{
rational r, r1(2, 3), r2(4, 5);

r = mul(rl, r2); // Bisheriges Wissen
r.print();
cout << '\n';

r = operator* (rl, r2); // Operator-Aufruf in Funktions-Schreibweise
r.print();
cout << '\n';

r=rl * r2; // Operator-Aufruf in Operator-Schreibweise
r.print();
cout << '"\n';

}

Ausgabe
8/15
8/15
8/15

Beide Losungen sind prinzipiell identisch — aber beide haben ihre Vorteile:

Element-Operator-Funktionen:
¢ Sie sind semantisch eindeutig der Klasse zugeordnet.
e Sie haben Zugriff auf alle Elemente der Klasse.

// return rational (lhs.numerator()*rhs.numerator (), lhs.denominator () *rhs.denominator());

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 9 — Version 1 Seite 6/15

e Sie kénnen Uberschrieben werden — siehe spater

Freie Operator-Funktionen:

e Sie kdnnen symmetrisch arbeiten (siehe Kapitel 16.3).

e Sie konnen fur fremde Klassen definiert werden (siehe Kapitel 16.4).

e Sie konnen fur Enums definert werden.

e Sie mussen aber oft als friend deklariert werden, oder mit einer Indirektion implementiert
sein, um ihre Aufgabe erflllen zu kénnen. (Fur Polymorphie mussen freie Operator-
Funktionen mit einer Indirektion implementiert sein

16.2 Verstandnis Beispiel

Nur noch mal zum Verstandnis — da ich es fast jedes Mal erlebe, dass Studenten eine
Element-Operator-Funktion folgendermassen deklarieren und definieren wollten:

class A

{

pubi%zﬁerator+(const A&, const Ag&); // Compiler-Fehler - dies sind drei Parameter

i
Die haufig gehorte ,falsche” Begrindung fur diesen Code ist, dass der Additions-Operator ,+*
doch zwei Parameter bendtigt. Das ist naturlich richtig, aber hierbei wird der implizite Objekt-
Parameter ,this“ vergessen. Auch eine Operator-Element-Funktion ist eine Element-
Funktion, und kann damit nur fir ein Objekt der Klasse aufgerufen werden, und dieses wird
der Element-Funktion implizit mitgegeben — Sie erinnern sich an den omindsen Parameter

,this“?

Wird eine Operator-Element-Funktion in Operator-Schreibweise aufgerufen, so ist das erste
Argument immer das Objekt, fur das die Operator-Element-Funktion aufgerufen wird. Und
damit ist dieses Objekt direkt ansprechbar.

16.3 Symmetrische Operatornutzung

Element-Operator-Funktionen konnen nur mit einem Objekt als erstem Argument aufgerufen
werden. Freie Operator-Funktionen kdnnen dagegen auch fir das erste Argument die
implizite Typumwandlung nutzen - damit kann der Operator flexibler genutzt werden.

Achtung — wir haben das komplexe und dunkle Thema Typumwandlungen bislang nicht
detailliert besprochen, und werden dass auch weiterhin aus Zeitmangel nicht machen.
Nehmen sie hier einfach hin, dass diese Umwandlungen erlaubt sind, und vom Compiler
automatisch gemacht werden.

class A // Klasse A mit freier Operator-Funktion +
{
public:
A();
A(int);
i

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 9 — Version 1 Seite 7/15

A operator+ (const A&, const A&);

class B // Klasse B mit Element-Operator-Funktion +
{
public:

B();

B(int);

B operator+(const B&) const;

}i

int main ()

{
A al, a2, a3;

al = a2 + a3; // okay -> al = operator (a2, a3)

al = 1+ a3; // okay -> al = operator(A(l),a3)

al = a2 + 2; // okay -> al = operator (a2, A(2))

al = 3 + 4; // okay -> al = A (3+4)

B bl, b2, b3;

bl = b2 + b3; // okay -> bl = b2.operator (b3)

bl =1+ b3; // Compiler-Fehler -> bl = B(l).operator (b3) nicht machbar
bl = b2 + 2; // okay -> bl = b2.operator (B(2))

bl = 3 + 4; // okay -> bl = B (3+4)

Empfehlung — benutzen Sie, wenn maglich, eine Element-Operator-Funktion. Bei Klassen
mit impliziter Typumwandlung und Operatoren, die symmetrisch aufgerufen kdnnen werden
sollen, muss es dagegen eine freie Operator-Funktion sein.

16.4 Ausgabe

16.4.1 Teil 1
Bislang mussten wir folgendes schreiben:

date d;
d.print();

Schoner ware aber die normale Ausgabe mit:

date d;
std::cout << d;

Losung — ein entsprechender Operator muss definiert werden.

16.4.2 Einschub uber Streams

Um einen Ausgabe-Operator zu definieren, sollten wir uns mit dem jetzigen Wissen die
normale Ausgabe noch einmal anschauen, und Uberlegen, was wohl dahinter steckt.

Frage — was verbirgt sich wohl hinter dieser Anweisung?
| std::cout << 8;
Analyse — bei ,std::cout” wird es sich um ein Objekt einer Klasse handeln - ,std::ostream®.

Entweder ist fur die Typen ,std::ostream® und ,int eine freie Operator-Funktion ,<<“ definiert,
oder ,std::ostream® enthalt eine entsprechende Element-Operator-Funktion.

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 9 — Version 1 Seite 8/15

Hypothese — das Symbol ,std::cout” ist wahrscheinlich ein globales Objekt der Klasse
,Std::ostream®. In dieser Klasse ist wahrscheinlich u.a. eine Element-Operator-Funktionen fir
den Ausgabe-Operator ,<<“ mit dem elementaren Daten-Typ ,int“ definiert.

Test der Hypothese — wenn das stimmt, musste sich der Ausgabe-Operator auch in
Funktions-Schreibweise aufrufen lassen:

std::cout << 8;
std::cout.operator<<(8) ;

Und als komplettes Programm:

#include <iostream>
using namespace std;

int main ()

{
cout << 8;
cout.operator<<(8) ;

}

Ausgabe
88

Klappt! Gut, und weiter.

Frage — und wie kommt die Verkettung der Ausgabe-Operatoren zustande?

| std::cout << 8 << 'x';

Analyse — der Ausgabe-Operator ,<<* wird von links nach rechts ausgewertet, d.h. zuerst
der Teil ,std::cout << 8% der dem Funktions-Aufruf ,std::cout.operator<<(8)“ entspricht. Damit
auch der zweite Funktions-Aufruf ,std::cout.operator<<('x')“ funktionieren kann, muss die
erste Operator-Funktion den veranderten Stream zurlickgegeben haben. Aullerdem muss es
auch noch eine Element-Operator-Funktion fur den Ausgabe-Operator ,<<* mit dem
elementaren Daten-Typ ,char® geben.

Hypothese — die Definition der Klasse ,std::ostream” sieht ungefahr so aus:

// Wahrscheinlich ungefaehre Definition von std::ostream
// Irgendwie wird der Namespace std erzeugt - noch unbekannt

class ostream

{

public:
ostream& operator<<(char) ;
ostream& operator<<(signed char) ;
ostream& operator<<(unsigned char);
ostream& operator<<(short);
ostream& operator<<(unsigned short) ;
ostream& operator<<(int);
ostream& operator<<(unsigned int);
// usw...

// und vieles mehr

}i

Bemerkung — in Wirklichkeit sieht das ganze leider viel komplizierter aus, da ,std::ostream*
nur ein typedef auf die Template-Klasse ,std::basic_ostream<charT, traits>“ ist, die u.a. auch

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 9 — Version 1 Seite 9/15

noch eine Basis-Klasse hat.

Aber im Prinzip konnten wir analysieren und verstehen, was sich hinter der so lange “blind*
benutzten Ausgabe verbirgt. Damit haben wir auch das nétige Verstandnis, um einen
eigenen Ausgabe-Operator fir unsere Klassen zu schreiben.

16.4.3 Teil 2

Genug des Vorgeplankels — definieren wir den Ausgabe-Operator fur die Klasse ,date”.

Da

e der erste Parameter des Ausgabe-Operators ,<<“ der Stream ist, und

e die Klasse ,std::ostream” — als Klasse der C++ Standard-Bibliothek — von uns nicht
erweitert werden kann,

e => muss der Ausgabe-Operator als freie Operator-Funktion implementiert werden.

e Und damit der Ausgabe-Operator Zugriff auf die Attribute der Klasse ,date” hat, wird er als
Friend-Funktion deklariert.

#include <ctime>
#include <iomanip>
#include <iostream>
using namespace std;

class date
{
public:
date();
date(int d, int m, int y);

friend ostream& operator<<(ostream&, const dateg); // Deklaration Ausgabe-Operator

private:
int day ;
int month ;
int year ;

}i

date::date()

{
time t timer = time(0);
tm* tblock = localtime (&timer) ;
day = tblock->tm mday;
month = tblock->tm mon+l;
year = tblock->tm year+1900;

}

date::date(int d, int m, int y)
: day (d), month (m), year (y)

{

}

ostream& operator<<(ostream& out, const date& d) // RAusgabe-Operator
{
char ¢ = out.fil11('0");
out << setw(2) << d.day << '.' << setw(2) << d.month << '.' << setw(4) << d.year ;
out.fill (c);
return out;

}

int main ()
{
date dil;
cout << "Es ist der " << dl << '"\n';

date d2(31, 12, 2000);

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 9 — Version 1 Seite 10/
15

| cout << "Das letzte Jahrtausend endete am " << d2 << '\n';
}

Mogliche Ausgabe (da das aktuelle Datum vorkommt)
Es ist der 13.01.2013
Das letzte Jahrtausend endete am 31.12.2000

Bemerkung — in der Praxis passiert es haufig, dass der Ausgabe-Operator private Attribute
bendtigt, fur die es keine Getter-Funktionen gibt. In diesem Fall wird er haufig als ,friend” der
Klasse implementiert werden (wie hier im Beispiel), oder er delegiert die eigentliche Ausgabe
an eine Element-Funktion der Klasse.

Hinweis — selbst wenn Sie noch nicht verstehen warum, dieser Ausgabe-Operator
funktioniert auch mit Ausgabe-File-Streams oder String-Streams. Der Grund dahinter ist die
.ist-ein“ Beziehungs-Semantik von &ffentlicher Vererbung — siehe spater.

16.5 Kopier-Zuweisungs-Operator =

Der Kopier-Zuweisungs-Operator ,=“ ist der Zuweisungs-Operator ,=, der ein Objekt der
Klasse selber erwartet. Er hat eine ahnliche Sonderstellung wie der Kopier-Konstruktor.

Im Normalifall sind in C++ Objekte einander zuweisbar. Vom Compiler wird daher, wenn Sie
selber keinen Kopier-Zuweisung-Operator deklarieren, automatisch ein impliziter ,,public®
Kopier-Zuweisungs-Operator erzeugt, der ein const-Referenz-Objekt der Klasse erwartet, fur
jedes Attribut der Klasse wiederum den Zuweisungs-Operator aufruft, und eine Referenz auf
das aktuelle Objekt zurtckgibt.

Reicht der automatische Kopier-Zuweisungs-Operator nicht aus, so mussen wir selber einen
definieren. Typischerweise ist er ,public”, erwartet das zugewiesene Objekt per Const-
Referenz und gibt das aktuelle Objekt als Referenz zurtick — verhalt sich also vergleichbar
zum automatischen Kopier-Zuweisungs-Operator.

class A
{
public:
A& operator=(const Ag&) ;
i

A& A::operator=(const A&)

{
cout << "Kopier-Zuweisungs-Operator\n";
return *this;

}

int main ()
{
A al, a2;
al = az; // Ausgabe: Kopier-Zuweisungs-Operator

}

Der implizite Kopier-Zuweisungs-Operator ist unabhangig von allen anderen Zuweisungs-
Operatoren, die Sie deklarieren bzw. definieren.

| class a

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 9 — Version 1 Seite 11/

15

{
public:

A& operator=(int) { return *this; }
i
int main ()
{

A al, a2;

al = 1; // okay — unser eigener Operator=(int)

al = a2; // okay - impliziter Kopier-Zuweisungs-Operator

}

Achtung — der Zuweisungs-Operator muss immer als Element-Operator-Funktion definiert
sein. Er darf nicht als freie Operator-Funktion implementiert werden.

Hinweis — bei unseren bisherigen Beispielen reichte der implizite Kopier-Zuweisungs-
Operator aus — genauso wie der implizite Kopier-Konstruktor und der implizite Destruktor. In
spateren Kapiteln finden sich Beispiele und Hinweise fir Klassen, bei denen der implizite
Kopier-Zuweisungs-Operator nicht ausreicht. Kann kein sinnvoller Kopier-Zuweisungs-
Operator implementiert werden, kann es sinnvoll sein, diesen zu verbieten — siehe Kapitel
16.5.1.

Hinweis — wenn Sie einen eigenen Kopier-Konstruktor schreiben missen, mussen Sie
eigentlich auch immer einen eigenen Kopier-Zuweisungs-Operator und einen eigenen
Destruktor schreiben. Dies wird auch gerne ,rule-of-three” (,Regel der Drei“) genannt.

Achtung — machen Sie sich bitte den Unterschied zwischen einem Kopier-Konstruktor und
einem Kopier-Zuweisungs-Operator klar. Obwohl beide sehr ahnlich wirken, sind ihre
Funktionen doch recht verschieden:

e Ein Kopier-Konstruktor erzeugt ein neues Objekt aus einem bestehenden.

e Ein Kopier-Zuweisungs-Operator weist ein bestehendes Objekt einem bestehenden zu.

Hinweis — um dem Anwender die Benutzung lhrer Klassen zu vereinfachen, bzw. die
Benutzung intuitiv zu gestalten, sollten Sie — wenn moglich — die normale, aus C bzw. C++
bekannte Operatorsemantik erhalten. Daher sollten z.B. die Zuweisungs-Operatoren wie ,=*
oder ,+=" das aktuelle Objekt als Referenz zurlickgeben.

16.5.1 Kopier-Zuweisungs-Operator verbieten

Wie verbietet man den Kopier-Zuweisungs-Operator? Oder genauer: wie verbietet man das
Zuweisen von Typen? Dies lauft vollkommen analog zum Verbieten des Kopier-Konstruktors
ab. Das Beispiel zeigt das Verbieten von Kopier-Konstruktor und Kopier-Zuweisungs-
Operator. Dazu deklariert man einfach die entsprechenden Elemente mit ,= delete”.

class A
{
public:
AQ);
A(const A&) = delete; // Kein Kopier-Konstruktor
A& operator=(const A&) = delete; // Kein Kopier-Zuweisungs-Operator
i

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 9 — Version 1 Seite 12/

15
int main ()
{
A al, az2;
A a3(al); // Compiler-Fehler, da A nicht kopierbar
al = a2; // Compiler-Fehler, da A nicht zuweisbar

16.6 Move-Zuweisungs-Operator =

So wie der Kopier-Konstruktor der Bruder des Kopier-Zuweisungs-Operators ist, so gibt es in
C++11 natirlich auch einen Bruder zum Move-Konstruktor — den Move-Zuweisungs-
Operator. Wie der Move-Konstruktor erwartet er eine Non-Const-Referenz auf ein Objekt der
Klasse und sollte die Move-Semantik fur die Zuweisung implementieren.

class A
{
public:
A(A&&) ; // Deklaration Move-Konstruktor
A& operator=(A&&); // Deklaration Move-Zuweisungs Operator
i
A& A::operator=(A&&) // Definition Move-Zuweisungs Operator
{
// Wie auch immer eine sinnvolle Implementierung aussieht...
}

Auch der Move-Zuweisungs-Operator wird vom Compiler automatisch erzeugt, wenn:
¢ kein benutzer-deklarierter Kopier-Konstruktor,

e Kkein benutzer-deklarierter Kopier-Zuweisungs-Operator,

¢ kein benutzer-deklarierter Move-Konstruktor,

e Kkein benutzer-deklarierter Move-Zuweisungs-Operator, und

e kein benutzer-deklarierter Destruktor

vorliegt.

Detaillierter will ich hier nicht auf den Move-Zuweisungs-Operator und die Move-Semantik
eingehen.

16.7 Funktions-Aufruf Operator

Ein ganz spezieller Operator ist in C++ der Funktions-Aufruf-Operator ,()“ — die runden
Klammern. Mit ihnen kann man einem Objekt Funktions-Charakter geben, d.h. Objekte wie
Funktionen nutzen.

#include <iostream>
using namespace std;

class A
{
public:
void operator () () const;
bi
void A::operator () () const

{

cout << "Funktions-Aufruf-Operator () \n";

}

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 9 — Version 1 Seite 13/
15

int main ()
a(); // Keine Funktion - Aufruf des Operators " ()" fuer das Objekt "a"

Ausgabe
Funktions-Aufruf-Operator ()

Der Funktions-Aufruf-Operator ist der einzige Operator in C++, bei dem der Operator die
Anzahl an Parametern nicht festlegt und auch Default-Argumente erlaubt sind — d.h. der
Funktions-Aufruf-Operator darf mit beliebigen Parameter-Anzahlen definiert werden und es
durfen dabei Default-Argumente benutzt werden.

#include <iostream>
using namespace std;

class A

{

public:
void operator
void operator
void operator
void operator

) const;

int) const;

bool) const;

double, int=5) const;

void A::operator () () const

cout << "Funktions-Aufruf-Operator () \n";

void A::operator () (int n) const

cout << "Funktions-Aufruf-Operator (int " << n << ")\n";

void A::operator () (bool b) const

{
cout << "Funktions-Aufruf-Operator (bool " << b << ")\n";
}

void A::operator () (double d, int n) const
{
cout << "Funktions-Aufruf-Operator (double " << d << ", int " << n << ")\n";

}

int main ()

{

A a;
a(); // RAufruf des Operators " ()"
a(4); // Bufruf des Operators " (int)" mit "4"
a(true); // RAufruf des Operators " (bool)" mit "true"
a(2.72); // BAufruf des Operators " (double, int)" mit "2.72, 5"
a(3.14, 6); // RAufruf des Operators " (double, int)" mit "3.14, 6"
}
Ausgabe

Funktions-Aufruf-Operator ()
Funktions-Aufruf-Operator (int 4)
Funktions-Aufruf-Operator (bool 1)
Funktions-Aufruf-Operator (double 2.72, int 5)
Funktions-Aufruf-Operator (double 3.14, int 6)

Hinweis — der Funktions-Aufruf Operator muss immer als Element-Funktion implementiert
werden. Als freie Funktion kann er nicht implementiert werden.

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 9 — Version 1 Seite 14/
15

Wahrscheinlich fragen Sie sich: Was soll das? Wozu implementiert man einen Funktions-
Aufruf Operator? Das ist doch sinnlos! Nein — ist es nicht. Funktions-Objekte sind viel
machtiger als Funktionen, da sie z.B. Attribute enthalten kdnnen und damit einen Status
haben, der einen einzelnen Funktions-Aufruf (iberlebt — ohne dass man gleich eine bése
globale Variable bendtigt. AulRerdem kann der Compiler Funktions-Objekte radikaler als
Funktionen optimieren, so dal} Funktions-Objekte oft performanter sind. Funktions-Objekte,
daher das Implementieren des Funktions-Aufruf Operators, sind ein wichtiges Idiom in C++.
Zum Beispiel im Zusammenhang mit STL Algorithmen werden sie sehr haufig verwendet.

Hinweis — Funktions-Objekte werden oft auch ,Funktoren® genannt, und als Oberbegriff fur
Funktionen und Funktions-Objekte findet man auch oft den Begriff ,Callables”.

16.8 Spezialitaten

Es lassen sich fast alle C++ Operatoren Uberladen — folgende sind die Ausnahme:
¢ Komponentenzugriff .

e Bereichszuordnung ,,::*

e sizeof*

e Komponente Uber Komponentenzeiger ,,.*
Bedingter Ausdruck ,? :*
Cast-Operatoren: ,static_cast®, ,const_cast®, ,reinterpret_cast“ und ,dynamic_cast"

Das heilfdt, dass sich auch nicht so offensichtliche Operatoren iberladen lassen, wie z.B.
e Pfeil-Operator ,->“

¢ Komma-Operator ,,,*

¢ Index-Operator ,[]

Hier noch ein paar Bemerkungen zu einigen speziellen Operatoren:

e Fur die Inkrement und Dekrement Operatoren ,++“ und ,—* existieren jeweils 2 Varianten
fur die Uberladung, um die Pra- und die Postfix Notation zu unterscheiden.

e Auch der Index Operator []* 1at sich Uberladen — damit kann eine Klasse quasi Array-
Charakter bekommen — siehe z.B. ,std::vector” oder ,std::string"“.

e Fir die dynamische Speicherverwaltung stellt C++ die Operatoren ,new” und ,delete” in
verschiedenen Ausfihrungen zur Verfugung. Diese Operatoren kdnnen sowohl global als
auch klassenspezifisch Uberladen werden.

e Neben Konvertierungs-Konstruktoren gibt es in C++ auch spezielle Konvertierungs-
Operatoren, die der Compiler fur die implizite Typumwandlung nutzen kann (vergleichbar
zu den Konvertierungs-Konstruktoren).

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 9 — Version 1 Seite 15/
15

16.9 Fazit

16.9.1 Grenzen

Die Operator-Uberladung hat Grenzen:

e Die Prioritat, Syntax, Parameteranzahl und Auswertungsreihenfolge liegen fest.

e Die Operatoren fur nicht-benutzerdefinierte Datentypen konnen nicht verandert werden.

e Es koénnen keine neue Operatoren definiert werden, d.h. z.B. Operator ,*** zum
Potenzieren ist nicht moglich.

e Operatoren durfen keine Klassen-Funktionen (,static”) sein.

e Der Compiler macht keine eigenstandigen Ubertragungen. Aus ,+“ und ,=“ wird nicht
automatisch ,+="“, bzw. die Postfix Semantik bei Inkrement und Dekrement Operatoren
wird nicht automatisch erzeugt.

e Einige Operatoren kdnnen nicht tberladen werden — s.o.

e Fast alle Operatoren lassen sich als Element-Funktionen definieren (Ausnahme ,new* und
.delete“) — aber nicht alle als freie Funktion:

e Alle Zuweisungen wie z.B. =, *=, +=, ...
e Konvertierungen

* ()

e []

o ->

e new/delete

e Bei Operator-Funktionen sind ausser beim Funktions-Aufruf-Operator keine Default-
Argumente zugelassen.

Da die Semantik der Operatoren vorbelegt ist, die Prioritat und Auswertungsreihenfolge
feststehen, kann eine willkiirliche Verwendung die Lesbarkeit eines Programmes stark
einschranken. Setzen Sie Operatoren daher mit Verstand ein.

16.9.2 Anmerkungen

Im Prinzip sind Operatorfunktionen nichts wirklich Neues — sie erganzen die Sprache um
keine echte neue Funktionalitat. Trotzdem sind sie in C++ sehr wichtig. Denn sie erlauben
die Benutzung der bekannten Operatoren fir eigene Typen, was in vielen Fallen die Les-
und Benutzbarkeit stark erhoht — z.B. bei mathematischen Klassen, aber auch der Element-
Zugriff bei Vektoren. Aullerdem kénnen mit Operatoren Klassen-Implementierungen
umgesetzt werden, die sich wie eingebaute Daten-Typen verhalten.

© Detlef Wilkening 2025 www.wilkening-online.de

