Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 1/30

Vorlesung

Objektorientiertes
Programmieren
in
C++

Teil 10 - WS 2025/26

Detlef Wilkening
www.wilkening-online.de
© 2025

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 2/30

17 Vererbung & Polymorphie.........ccciiiiiiinnsicnsnns s s 2
L T 01 (=T 1 4 1= F 2
L Y =T (=14 o 10 o o SRR TRRTRI 2
17.3 Konsequenzen aus der ,ist-ein® Beziehungccoooiiiiiiiiiei e 12
LA S o) 1Y 0 Lo o] o1 SR 15
17.5 Beispiel ,,ODStKOrh ... 18
I T B 1S U1 (o T (=T o T 24
17.7 Abstrakte Basis-KIasSSEN..........ccoovieiiii i 26
17.8 DYNAMIUC-CASE.....co it e e e et e e e st e e e e e e e e e e enraeeeaans 27
17.9 Vererbung & POlyMOIPhieccooiiiiiiiieee e s 29

17 Vererbung & Polymorphie

17.1 Intermezzo

Wenn wir mehr Zeit fur die Vorlesung hatten, dann kadmen jetzt erstmal einige andere
Themen an die Reihe. Aber wir ndhern uns dem Ende der Vorlesung, darum mussen wir
fokussieren. Und C++ hat zwei grol3e zentrale Themen. Da ist zum einen die generische
Programmierung mit Templates, die in der Vorlesung leider viel zu kurz gekommen sind. Und
zum anderen die objekt-orientierte Programmierung mit Klassen, Vererbung und
Polymorphie — und dieses Thema muf} in der Vorlesung rein. Darum sind wir jetzt in diesem
Kapitel.

Leider ist es so, dass wir eigentlich die Kapitel dazwischen bendétigen wirden. Dann bei
,dynamic_cast‘ (siehe Kap. 18.8) kdnnen Exceptions fliegen, also brauchten wir sie
eigentlich. Vererbung und Polymorphie geht in C++ fast immer mit dynamischer
Speicherverwaltung einher, und die basiert in modernem C++ auf Smart-Pointern, und die
basieren auf den normalen C-Zeigern. Also brauchten wir das alles. Und daflir waren auch
Exceptions wieder notwendig.

Aber all diese Themen passen zeitlich nicht mehr. Darum machen wir den grof3en Sprung.
Wenn Sie in den Beispielen Zeiger, dynamische Speicherverwaltung oder Exceptions sehen,
dann ignorieren Sie sie im Detail. Die wichtigen Grundlagen von Vererbung und Polymorphie
sind auch ohne dieses Wissen verstandlich, und die meisten Beispiele kommen ohne diese
Dinge aus. Und aulierdem haben ja die meisten von Ihnen im letzten Semester C gehort,
und da gehoren Zeiger zum Inhalt. Das heil3t, Sie kennen zumindest das prinzipielle Konzept
mehr als gut genug.

17.2 Vererbung

Vererbung (genau genommen ,,6ffentliche Vererbung®) ist die Modellierung einer "ist-ein"
Beziehung. Eine ,ist-ein” Beziehung meint, dass jedes Objekt der abgeleiteten Klasse ein
Objekt der Basis-Klasse ersetzen kann, ohne dass es sematische Probleme gibt.

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 3/30

Lebewesen

‘I
£

5/ \R

Eine ,ist-ein“ Beziehung in der normalen Welt

Immer dann, wenn die zu modellierende Domaine ,ist-ein“ Beziehungen enthalt, bietet sich
damit ,6ffentliche Vererbung* als eine sinnvolle Modellierungs-Strategie an. Bevor wir hier
aber tiefer einsteigen, lassen sie uns das Konzept der Vererbung noch mal detaillierter
betrachten, und einige Begriffe definieren.

|

Eine abstrakte ganz allgemeine , ist-ein“ Beziehung

Hierbei ist:

¢ A Basis-Klasse (von B und C)

e B ist abgeleitet von A => Bistein A => alles was fur A gilt, gilt auch fir B
e Cistabgeleitet von A => Cistein A => alles was fur A gilt, gilt auch fir C

In Richtung der abgeleiteten Klassen findet eine Spezialisierung statt:

e B st eine Spezialisierung von A

e Ein Pferd ist eine Spezialisierung eines Saugetiers

e Alles, was fur Saugetiere gilt (z. B. Alter, Gewicht, ...), gilt auch fur Pferde. All diese
Attribute und Funktionen erbt Pferd von Saugetier.

In Richtung der Basis-Klassen findet eine Generalisierung oder Verallgemeinerung

statt — Basis-Klassen fassen gemeinsame Dinge der abgeleiteten Klassen zusammen:

e A enthalt alle Gemeinsamkeiten von B und C.

e Vogel enthalt alles Vogel-typische, unabhangig, ob es sich um eine Amsel oder eine Move
handelt.

Hinweise

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 4/30

¢ Die abgeleitete Klassen (z. B. B und C) sind unabhangig voneinander.

¢ Von einer Klasse kdnnen beliebig viele andere Klassen abgeleitet werden.
¢ Eine Klasse kennt die von ihr abgeleiteten Klassen nicht.

e Umgekehrt kennt die abgeleitete Klasse naturlich ihre Basis-Klasse.

e Ein Basis-Klasse wird oft auch Super-Klasse genannt.

e Eine abgeleitete Klasse wird oft auch Sub- oder Unter-Klasse genannt.

Hinweis — alle Vererbungen in diesem Kapitel sind Einfach-Vererbungen (,single
inheritance®), d. h. eine Klasse hat genau eine Basis-Klasse. C++ unterstutzt auch
Mehrfach-Vererbung (,multiple inheritance®), die aus Zeitmangel leider nicht behandelt wird.

17.2.1 Implementation

Wie wird Vererbung in C++ implementiert?

Syntax
class Klassen-Name : [Vererbungs-Spezifizierer] Basis-Klasse{ ... };
class A
{
public:
int ai;
void af();
}i
class B : public A // Definition Klasse B oeffentlich abgeleitet von A
{
public:
int bi;
void bf();
i
int main ()
{
A a;
B b;
a.ai=7; // okay
a.af(); // okay
a.bi=8; // Compiler-Fehler - A hat keine Varibale bi
a.bf(); // Compiler-Fehler - A hat keine Funktion bf(
b.ai=9; // okay - B hat Variable ai von A geerbt
b.af(); // okay - B hat Funktion af() von A geerbt
b.bi=10; // okay
b.bf(); // okay
}

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 5/30

Klassen-Hierarchie des Beispiels

Hinweis — die abgeleitete Klasse erbt die Funktionalitédt der Basis-Klasse, was man daran
sieht, dass das Objekt der abgeleiteten Klasse ,B“ die Funktionen und Attribute von , A"
besitzt, ohne dass sie explizit programmiert werden mussten.

Die Vererbungshierarchie lasst sich beliebig fortsetzen, z.B. in dem man zusatzlich eine

Klasse ,C* von ,B“ ableitet:

Klassen-Hierarchie des erweiterten Beispiels

// Klasse A und B wie eben
class C : public B
{
public:
int ci;
void cf();
}i
int main ()
{
C ©p
c.ai=11; // okay - C hat Variable ai von B (wiederum von A) geerbt
c.af(); // okay - C hat Funktion af() von B (wiederum von A) geerbt
c.bi=12; // okay - C hat Variable bi von B geerbt
c.bf(); // okay - C hat Funktion bf() von B geerbt
c.ci=13; // okay
@.@E() 8 // okay
}

Welche Elemente enthalten die einzelnen Klassen nun?

Klasse Attribut Element-Funktionen
A ai af()
B ai af()
bi bf()
C ai af()

© Detlef Wilkening 2025

www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 6/30

bi bf()
Ci cf()
Denn
e Bistein A
e CisteinB

e Cistein A (Vererbung ist transitiv)

17.2.2 Konstruktoren

Konstruktoren mussen meist neu definiert werden, da sie Default maRig nicht vererbt
werden. Dies ist vernlnftig, da ein ererbter Konstruktor nicht wissen kann, wie er die neuen
nicht-ererbten Attribute initialisieren soll.

Wird ein Objekt einer abgeleiteten Klasse erzeugt und ist fur die Basis-Klasse kein spezieller
Konstruktor angegeben, so wird automatisch der Standard-Konstruktor der Basis-Klasse fur
den Basis-Klassenanteil des Objekts genommen.

class A
{
public:
A() { cout << "Konstruktor A\n"; }
}i

class B : public A // B abgeleitetet von A
{
public:
B() { cout << "Konstruktor B\n"; }
}i

int main ()

{
B b;

}

Ausgabe
Konstruktor A
Konstruktor B

Hat die Basis-Klasse keinen Standard-Konstruktor, so muss der gewinschte Konstruktor in
der Initialisierungsliste der abgeleiteten Klasse angegeben werden.

class A

{

public:
A(int);

bi

A::A(int 1)
{
}

class B : public A // B abgeleitetet von A
{
public:

B() 7

B(int);

B::B() // Compiler-Fehler, kein Standard-Konstruktor
{
}

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 7/30

B::B(int 1) // okay, explizite Angabe des Konstruktors
: A(1)

{

}

Beim Konstruieren eines Objekts wird vor den Konstruktoren der Attribute der Konstruktor
der Basis-Klasse aufgerufen. Die Basis-Klasse verhalt sich bzgl. der Erstellung eines Objekts
quasi wie ein Attribut, das als erstes in der Klassen-Definition steht.

class attribut

{
public:

attribut (int 1) { cout << "attribut (" << i << ")\n"; }
}i

class base
{
public:
base() : attribut (1) { cout << "base ()\n"; }

private:
attribut attribut ;
}i

class derived : public base

{
public:
derived() : attribut (2), base() { cout << "derived()\n"; }

private:
attribut attribut ;
}i

int main ()

{

derived d;

}

Ausgabe
attribut (1)
base ()
attribut (2)
derived ()

Hinweis — obwohl in der Initialiisierung von ,B()" das Attribut ,attribut “ vor der Basis-Klasse
»,A“ angegeben ist, wird die Basis-Klasse vor dem Attribut der abgeleiteten Klasse
konstruiert. Die Reihenfolge der Konstruktion ist durch die Vererbungsbeziehung und die
Klassen-Definition festgelegt.

Was passiert genau?
1. Speicherplatz reservieren
2. Aufruf des Konstruktors der Basis-Klasse:
a) Aufruf der Konstruktoren der Attribute der Basis-Klasse (Reihenfolge Definition)
b) Ausfuhren des Konstruktor-Rumpfs der Basis-Klasse
3. Aufruf der Konstruktoren der Attribute der abgeleiteten Klasse (Reihenfolge Definition)
4. Ausfuhren des Konstruktor-Rumpfs der abgeleiteten Klasse

Durch diese Reihenfolge ist gewahrleistet, dass jedes Objekt immer einen stabilen Zustand
der ihm zugrunde liegenden Teil-Objekte sieht.

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 8/30

17.2.3 Destruktoren

Auch Destruktoren werden nicht vererbt.

Die Destruktoren werden umgekehrt abgearbeitet, d. h. von der abgeleiteten Klasse bis hin
zur Basis-Klasse. Es werden automatisch alle Destruktoren des Vererbungszweiges
durchlaufen.

class attribut

{

public:
attribut (int i) : n_ (i) { cout << "attribut(" << n_ << ")\n"; }
~attribut () { cout << "~attribut (" << n_ << ")\n"; }

private:
int n ;

}i

class base

{

public:
base() : att (1) { cout << "base ()\n"; };
~base () { cout << "~base()\n"; };
private:

attribut att ;
}i

class derived : public base

{

public:
derived() : att (2) { cout << "derived()\n"; };
~derived () { cout << "~derived () \n"; };
private:

attribut att ;
}i

int main ()

{

derived d;

}

Ausgabe
attribut (1)
base ()
attribut (2)
derived ()
~derived ()
~attribut (2)
~base ()
~attribut (1)

Durch diese Reihenfolge ist gewahrleistet, dass auch bei der Zerstérung einer Objekts jedes
Teil-Objekt immer einen stabilen Zustand der ihm zugrunde liegenden Objekte sieht.

17.2.4 Qualifizierter Name

Manchmal ist es nétig, Symbole einer Klasse anzusprechen, die eigentlich nicht sichtbar
sind, da sie Uberschrieben oder verdeckt sind. In diesem Fall muss das Symbol Uber den
Namen der Klasse, den Scope-Resolution Operator und den eigentlichen Namen referenziert

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 9/30

werden.

class A
{
public:
void f();
}i

class B : public A
{

public:
void g();
}i
void B::g()
{
A::£(); // expliziter Aufruf der Element-Funktion f der Klasse A
}
int main ()
{
B b;
b.g();
b.A::£(); // expliziter Aufruf der Element-Funktion f der Klasse A

Hinweis — da wir Uberschreiben und Verdeckung noch nicht kennen, ist das Beispiel etwas
hergeholt, aber mit dem nachsten Kapitel wird sich das andern.

17.2.5 Uberschreiben von Funktionen |

Eine abgeleitete Klasse erbt von der Basis-Klasse u.a. ihr Verhalten - die Funktionen. Das

ererbte Verhalten muss fur die abgeleitete Klasse aber nicht korrekt sein. In manchen Fallen
ist es komplett falsch, in anderen stimmt das Prinzip, aber im Detail gibt es Abweichungen. In
solchen Fallen kann die ererbte Funktion von der abgeleiteten Klasse Uberschrieben werden.

Achtung — das ,Uberschreiben® wie es in diesem Kapitel vorgestellt wird, ist noch nicht das
Richtige Uberschreiben, und arbeitet in manchen Situationen fehlerhaft. Erst mit virtuellen
Funktionen wird Uberschreiben vollstandig — das folgt gleich.

Falls die Implementierung einer Basis-Klassen Element-Funktion nicht passend ist, kann sie
in einer abgeleiteten Klasse neu implementiert, d. h. komplett Gberschrieben werden.

class A
{
public:
void £() { cout << "A::f()\n"; }
}i

class B : public A
{
public:
void f£() { cout << "B::f()\n"; }

void g ()
{ £0); // ruft B::f() auf
A::f(); // ruft A::f() auf
}i }
int main ()

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 10/

30
{
A a;
B b;
a.f(); // ruft A::f() auf
b.£(); // ruft B::f() auf
b.A::f(); // ruft A::f() auf
b.g();
}
Ausgabe
A::f ()
B::f()
A::f()
B::f()
A::f()

Auf die Art und Weise kann eine nicht passende Implementierung einer Basis-Klasse in einer
abgeleiteten Klasse neu implementiert, d. h. Uberschrieben werden.

Ein Beispiel ware eine Funktion ,get_salary“ in einer Klasse ,employee“ und in der
abgeleiteten Klasse ,sales_manager®. Ein Vertriebsleiter ist sicherlich ein Angestellter, d.h.
far ihn gelten die Funktionen get_name(), get_personnel_no(), usw — von daher sieht
Vererbung nach der korrekten Modellierung aus. Aber wahrend Angestellte meist ein Fest-
Gehalt beziehen, wird bei einem Vertriebsleiter oft eine Umsatz-Beteiligung eingerechnet.
Von daher ist die ,get_salary” Implementierung der Basis-Klasse sicher nicht richtig.

class employee

{

public:
const std::string& get name () const;
int get personnel no () const;

money get salary() const;
}i

class sales manager : public employee
{
public:

money get salary() const;

}i

Hinweis — oft ist es so, dal} die Basis-Klassen Implementierungen gar nicht so schlecht sind,
aber eben nicht 100% passen. Vielleicht bekommt der Vertriebsleiter zusatzlich zu einem
Festgehalt einen variablen Anteil hinzu — in diesem Fall ware die Basis-Klassen
Implementierung mit dem Festgehalt ja nicht falsch, sondern eben nur ein Teil der korrekten
Implementierung. Darum ist es oft sinnvoll in einer Neu-Implementierung auf die Basis-
Klassen Implementierung zuriickzugreifen.

Dafur wird dann immer die vollstandige Referenzierung (oder Qualifizierung) mit dem Basis-
Klassen Namen bendtigt — ansonsten wurde eine Endlos-Rekursion entstehen, denn dann
wurde die Funktion sich ja immer selbst aufrufen.

void derived: :fct ()

{

base: :fct(); // expliziter Aufruf der Original -Element-Funktion

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 11/
30

17.2.6 Zugriffsbereich protected

Zusatzlich zu den Zugriffsbereichen public und private gibt es Aul3erdem noch protected.
Der Zugriffsbereich protected liegt in seiner Wirkung zwischen public und private.

Im Gegensatz zu private kann auf Elemente im Zugriffsbereich protected auch noch von
abgeleiteten Klassen zugegriffen werden.

class A

{
public:
void fpublic();

protected:
void fprotected();

private:
void fprivate () ;

i

class B : public A
{

public:
void £();
}i
void B::f()
{
fpublic(); // okay - Aufruf von A::fpublic ()
fprotected () ; // okay - Aufruf von A::fprotected()
fprivate () ; // Compiler-Fehler - A::fprivate() ist nicht erreichbar
}
int main ()
{
A ay
a.fpublic(); // okay - Aufruf von A::fpublic ()
a.fprotected(); // Compiler-Fehler - A::fprotected() ist nicht erreichbar
a.fprivate (); // Compiler-Fehler - A::fprivate() ist nicht erreichbar

}

Achtung — beachten Sie bitte, dass bzgl. aller abgeleiteten Klassen der protected-Bereich
mit zur 6ffentlichen Schnittstelle, d. h. zum Interface gehort und entsprechend designt
werden sollte. Legen Sie d.h. auch in den protected-Bereich keine Datenelemente.

17.2.7 Vererbungs-Spezifikationen

In C++ gibt es drei Vererbungs-Spezifikationen:

public
protected
private default bei class

Normalerweise wird nur die public-Vererbung benutzt, die semantisch einer “ist-ein“
Beziehung entspricht. Dem gegenliber modellieren protected- und private-Vererbungen
eine ,,ist-implementiert-mit“ bzw. eine ,,hat-ein“ Beziehung, die spezielle Mdglichkeiten
bietet. AuRerdem wird mit der Vererbungs-Spezifikationen wird bestimmt, wie die

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 12/
30

Zugriffsbereiche der Basis-Klasse den Zugriffs-Bereichen der abgeleiteten Klasse
zugeordnet werden.

Hinweis — in der Praxis sind 99,9% aller Falle &ffentliche Vererbung — fast alle anderen
Sprachen kennen auch nur diese Art der Vererbung.

Achtung — ein gern gemachter Fehler in C++ ist das Vergessen des Vererbungs-
Spezifizierers ,public”, wodurch eine private Vererbung mit anderer Semantik und anderem
Verhalten entsteht.

17.3 Konsequenzen aus der ,ist-ein“ Beziehung

Ganz im Sinne der ,ist-ein“ Semantik kdnnen in C++ Objekte einer o6ffentlich-abgeleiteten
Klasse auch immer fir Objekte der Basis-Klasse stehen. Dies hat mehrere Konsequenzen.

17.3.1 Konsequenz 1

Wird in einem Ausdruck ein Objekt einer Basis-Klasse erwartet, so kann auch immer ein
abgeleitetes Objekt als Argument benutzt werden. Dies betrifft z.B. Funktions-Aufrufe oder
Zuweisungen, gilt aber fir alle Arten von Ausdriicken.

class A { };
class B : public A { };

void f (A)

f(b); // okay - B Objekt wird als A benutzt, da B ein A ist

a=b; // okay - B Objekt wird als A benutzt, da B ein A ist

In diesem Beispiel wird ,.b“ in beiden Ausdricken automatisch in ein A-Objekt gewandelt -
hierbei geht jede Information Uber den eigentlichen Typ verloren, d.h. in der Funktion ,f* ist
der Parameter wirklich ein A-Objekt, und auch das ,a“ ist nur ein ,A“ und mehr nicht.

17.3.2 Konsequenz 2

Da ein Objekt einer abgeleiteten Klasse immer fur ein Objekt einer Basis-Klasse stehen
kann, muss dies auch fur jegliche Art von Referenzen auf Basis-Klassen-Objekte stimmen.

class A { };
class B : public A { };

int main ()

{
B b;
A* p = &b; // okay - denn ein B "ist ein" A
A T = b; // okay - denn ein B "ist ein" A

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 13/
30

| }

Auch dies ist ganz im Sinne der ,ist-ein® Semantik. Es ist ja auch korrekt, wenn sie z.B. auf
ein Auto zeigen und sagen: ,Dies ist eine Maschine®, obwohl sie dabei eine sehr allgemeine
Abstraktion benutzen, aber ein Auto ist eben eine Maschine.

Hierbei verliert das Objekt auch nicht seine Identitat, das es nicht kopiert, zugewiesen oder
sonstwie verandert wird. Es bleibt im Speicher ganz normal bestehen, und wird nur von
aulBen uber verschiedene Typen referenziert.

17.3.3 Statischer und dynamischer Typ

Man unterscheidet in C++ den sogenannten statischen und den dynamischen Typ.

e Der statische Typ ist der Typ, den der Compiler sieht, da er ohne wenn und aber zur
Compilezeit feststeht und eindeutig bekannt ist. Im Beispiel sind dies die Typ-Varianten
von “A” der Variablen ,p“ und ,r*.

e Dem gegenuber ist der dynamische Typ der echte Typ des Objekts, auf das verwiesen
wird. Dieser ist zur Compilezeit nicht zwingend bekannt, und muss nicht dem statischen
Typ entsprechen. Im Beispiel ist der dynamische Typ des referenzierten Objekts ,B,
obwonhl der statische Typ ,A” ist.

class A { };

class B : public A { };

int main ()

{
B b; // statischer Typ ist "B", dynamischer Typ auch
A* p = &b; // statischer Typ ist "A*", der dynamische Typ kann mehr sein...
A& ¥ = b; // statischer Typ ist "Ag&", der dynamische Typ kann mehr sein...
int n; // statischer Typ ist "int", dynamischer Typ auch
int& ri = n; // statischer Typ ist "inté&", dynamischer Typ auch

}

Der dynamische Typ kann sich nur dann vom statischen Typ unterscheiden, wenn:
e die Variable ein Zeiger oder eine Referenz ist, und
o der statische Typ eine Klasse ist, von der es Ableitung geben kann.

17.3.4 Diskussion

Falls Sie das Ganze etwas verwundert, machen Sie sich mal von der ganzen Computerei
frei, und betrachten das Ganze mit einem normalen Beispiel: Wenn Sie z.B. auf einen Stuhl
zeigen und sagen ,das ist ein Stuhl, dann wird Ihnen wohl niemand widersprechen. Aber
auch die Aussage ,das ist ein Mdbelstlick” ware ohne Frage richtig.

class A { };
class B : public A { };

int main ()

{
B b;
A* p = &b; // "p" zeigt auf ein "A", und vielleicht auch auf mehr...

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 14/
30

| As r = b; // "r" referenziert ein "A", und vielleicht auch mehr...
}

Und genau das gleiche passiert hier: Die Referenz-Variable sagt mit ihrem statischen Typ
,A“ das sie ein Mdbelstuck referenziert (darauf zeigt), obwohl sie doch in Wirklichkeit einen
Stuhl (ein Objekt vom Typ ,B*) referenziert (darauf zeigt). Aber daran ist nichts Falsches und
unwahres - sie sagt nur nicht alles. Aber in vielen Kontexten reicht das. Wir sagen zu
unserem Besuch auch ,Nimm dir einen Stuhl“, und lassen offen ob er sich in einen Sessel,
die gute Coach oder den normalen Holzstuhl setzen soll. Warum auch? Im Prinzip wirde es
sogar reichen zu sagen ,Nimm doch bitte Platz®.

17.3.5 Etwas komplexerer Fall

Manch einer bringt den Einwand, dass die Unterscheidung in statische und dynamische
Typen doch sinnlos ist — jeder sieht doch bei dem obigen Beispiel, dass ,p“ und ,r auf das B
Objekt ,b“ verweisen. Bei dem obigen Beispiel ist dies richtig — es ist halt als einfuhrendes
Beispiel sehr einfach. Schon bei einem nur etwas komplexeren Fall 1alt sich der dynamische
Typ prinzipiell erst zur Laufzeit bestimmen — und hat damit seine Berechtigung.

class A { };

class B : public A { };

class C : public A { };

void fct (A& 1) // Ginge auch mit Zeigern - genau der gleiche Effekt

// Welchen Objekt-Typ referenziert "r" hier? Ein "A", "B" oder "C"?

}

Beim ersten Durchlauf von ,fct“ referenziert ,r“ ein A-Objekt, beim Zweiten ein ,B“ Objekt und
beim Dritten ein ,C* Objekt. Der dynamische Typ von ,r“ andert sich hier zur Laufzeit und
seine Bestimmung macht daher auch immer erst wahrend des konkreten Aufrufs Sinn. Er
laRkt sich weder von uns noch vom Compier vorher bestimmen.

In diesem Beispiel kbnnen wir vorher noch sagen, bei welchem Durchlauf welcher
dynamische Typ vorkommt. Wenn wir die Funktions-Aufrufe aber von einem Zufallszahlen-
Generator oder Benutzer-Eingaben abhangig machen — dann ist selbst das vorher nicht
mehr maglich.

In realen Programmen kdénnen wir (und der Compiler) nur den statischen Typ exakt
bestimmen — Uber den dynamischen Typ kann man erst zur Laufzeit in der konkreten
Situation reden. Und genau hier kommt jetzt die Polymorphie ins Spiel...

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 15/
30

17.4 Polymorphie

17.4.1 Bisheriges Verhalten

Bisher werden Element-Funktions-Aufrufe des Compilers Uber den statischen Typ einer
Variablen aufgeldst.

class A
{
public:
void f() const { cout << "A::f\n"; }
i

class B : public A
{
public:
void f() const { cout << "B::f\n"; }
}i

class C : public B
{
public:
void f() const { cout << "C::f\n"; }
}i

int main ()

{
C ep
A& ra
B& rb
C& rc
ra.f(); //
rb.£(); //
rc.f(); //

o
Q

o

VAAVARV:

QW
Hh

}

Ausgabe
A::f
B::f
C::f

Dieses Verhalten kommt daher, dass der Compiler die Funktions-Aufrufe zum Compile-
Zeitpunkt fest verdrahtet (statische Bindung, friihe Bindung, static binding). Hierbei wird nicht
der echte dynamische Objekt-Typ benutzt, da der Compiler diesen nicht wissen kann. So
bindet der Compiler den Funktions-Aufruf fest Gber den statischen Typ, Uber den den der
Funktions-Aufruf vorgenommen wird. Wir haben das schon detailliert in den Kapiteln Gber die
Arbeitsweise von Compilern und Linkern kennen gelernt. Diese direkte Verdrahtung erklart ja
auch die Performance von Funktions-Aufrufen in C++.

Anders ist dies bei virtuellen Funktionen.

17.4.2 Virtuelle Funktionen, bzw. Uberschreiben von Funktionen II

Bei virtuellen Funktionen wird der Funktions-Aufruf erst zur Laufzeit festgelegt (dynamische
Bindung, spéte Bindung, late binding). Hierbei wird zur Laufzeit quasi der echte dynamische
Typ des Objekts bestimmt und die Funktion dieses Typs aufgerufen.

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 16/
30

Um eine Element-Funktion zu einer virtuellen Funktion zu machen, muss das Schlisselwort
wvirtual“ vor die Element-Funktions-Deklaration geschrieben werden. Bei der Definition einer
virtuellen Funktion darf das Schllisselwort virtual nicht auftauchen.

Syntax (Element-Funktions-Deklaration)
virtual rueckgabetyp funktionsname (parameterliste);
virtual rueckgabetyp funktionsname (parameterliste) const;

Bei den Uberschreibenden Funktionen kann das Schllsselwort “virtual” weggelassen
werden, und wird es auch fast immer. Stattdessen wird das optionale Schlisselwort
“override” hinter die Funktion eingefligt. Der Compiler Uberprift dann, ob diese Funktion
wirklich eine Funktion der Basisklasse Uberschreibt.

class A

{
public:

virtual void f() const { cout << "A\n"; }
}i

class B : public A
{
public:
void f() const override { cout << "B\n"; }

}i

class C : public A
{
public:
virtual void f() const override { cout << "C\n"; }

}i

class D : public C
{
public:
virtual void f() const override;

}i

void D::f() const

{
cout << "D\n";

}
class E : public A { };

class F : public E
{
public:
virtual void f() const override { cout << "F\n"; }
i

int main ()
{

ay

b;

Cc;

d;

e;

£;

A* p;

HEOQo >

p=&a;
p—>f(); // p zeigt auf ein A-Objekt => A::f() -> Ausgabe A

p=&b;
p—>f(); // p zeigt auf ein B-Objekt => B::f() -> Ausgabe B

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 17/

30
p=&c;
p—>f(); // p zeigt auf ein C-Objekt => C::f() -> Ausgabe C
p=&d;
p—>f(); // p zeigt auf ein D-Objekt => D::f() -> Ausgabe D
p=&e;
p—>f(); // p zeigt auf ein E-Objekt => A::f() -> Ausgabe A
// da E keine eigene Fkt. f() hat
p=&£;
p—>f(); // p zeigt auf ein F-Objekt => F::f() -> Ausgabe F
}
Ausgabe

O Qoo

Eine Funktion ist ab der Klasse in der Vererbungs-Hierarchie virtuell, wo sie in der
Klassendefinition zum ersten Mal mit virtual deklariert wurde. Wird in den weiteren
abgeleiteten Klassen die virtual Deklaration weggelassen, so ist die Funktion trotzdem
weiterhin virtuell.

Achtung — nur Element-Funktionen kénnen virtuell sein und Uberschrieben werden. Weder
Klassen-Funktionen noch freie Funktionen kdnnen virtuell sein, da sie keinen Objekt-Bezug
haben, Uber den die Funktions-Auswahl (,Funktions-Dispatch®) zur Laufzeit moglich ist.

17.4.3 Diskussion

Mit Polymorphie ist gemeint, dass eine Funktion vielgestaltig ist, d. h. in Abhangigkeit vom
Kontext unterschiedlich (angepasst) reagiert. Genau genommen reagiert naturlich nicht eine
Funktion unterschiedlich, sondern es werden unterschiedliche Funktionen aufgerufen, ohne
dass sich der Entwickler um die echten Objekt-Typen und deren verschiedene Funktionen-
Implementierungen kimmern muss. Dies ermdglicht es ihm, ahnliche Objekte’ gleich zu
behandeln, ohne Details kennen zu mussen (z.B. welche Klassen es gibt, wie sie heissen,
wie sie zu behandeln sind, usw...).

Hinweis — im ersten Augenblick sieht Polymorphie nicht nach etwas Besonderem aus,
sondern eher nur nach einem kleinen Sprachgag — aber dies ist falsch. Es ist das
Schliisselkonzept der Objektorientierung. Seine wahre Machtigkeit erkennt man meist erst
in praktischen Einsatzen, von denen in den weiteren Kapiteln leider nur ein paar folgen
werden.

T Ahnliche Objekte sind Objekte, die eine gemeinsame Basisklasse haben.

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 18/
30

17.5 Beispiel ,,Obstkorb*

17.5.1 Aufgabe

Nehmen wir an, sie wollen einen Obstkorb implementieren:
e Ein Obstkorb soll einfach mehrere Friichte verschiedener Obstsorten aufnehmen kénnen.
Der Obstkorb Ubernimmt nicht den Besitz der Frichte.
e Der Obstkorb hat einen Namen.
e AulRerdem soll der Obstkorb einen Konsolen Ausgabe folgender Form haben:
e Name vom Obstkorb
¢ Anzahl der Frichte im Obstkorb
o Darstellung alle Friichte — alphabetisch sortiert nach dem Namen der Frucht
e Jede Frucht hat einen Namen.
e Die Darstellung einer Frucht besteht aus Name und Obstsorte.
e Fur den Anfang begnigen wir uns mit den zwei Obstsorten ,Apfel“ und ,Birne*.

Hier eine mogliche Beispiel-Ausgabe eines Obstkorbs mit 5 Frichten:

Gewlinschte Ausgabe - wenn denn der Obstkorb fertig ware. ..
Ich bin der Obstkorb "Geschenk" und enthalte 5 Fruechte:

- Bauchiger Adler (Birne)

- Dickes Schwein (Apfel)

- Fetter Kohl (Birne)

- Gruener Baum (Apfel)

- Saftiger Schmatz (Apfel)

17.5.2 Losung
Fangen wir mal wieder mit der Main-Funktion an — wie sollte sie denn aussehen? Z.B. so:

int main ()
{
basket b ("Geschenk") ;

pear frl("Bauchiger Adler");
apple fr2("Dickes Schwein");
pear fr3("Fetter Kohl");
apple fr4("Gruener Baum");
apple fr5("Saftiger Schmatz");

b.insert (frl) ;
b.insert (fr2) ;
b.insert (fr3) ;
b.insert (fr4) ;
b.insert (fr5) ;

b.print();

Hiermit ist klar, dass wir eine Klasse ,basket” fir den Obstkorb brauchen:

class basket
{
public:
basket (const string& name);

void insert (const apple§);

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 19/
30

void insert(const pearé&);

void print () const;
}i

Implementieren wir die Klasse schnell:
e fur den Namen brauchen wir einen String

class basket
{
public:
basket (const string& name) : name (name) {}

private:
string name ;

i

e Und fur die Frichte einfach einen Vektor.

class basket

{

private:
string name ;
vector<???> fruits ;

i

Aber einen Vektor fir was? Wenn er Apfel aufnehmen kann, dann passen keine Birnen
hinein. Und kann er Birnen aufnehmen, dann bleiben die Apfel auen vor.

Eine Moglichkeit ware die Verwendung zweier Vektoren — einen fur Apfel, und den anderen
fur Birnen. Aber das wird kompliziert, und bei weiteren Obstsorten wird das immer
furchtbarer. Eine andere Losung ware sicher besser...

Nutzen wir Vererbung und Polymorphie. Sowohl Apfel als auch Birnen sind Obstsorten (,ist-
ein“ Beziehung) — also erzeugen wir eine Basis-Klasse ,fruit‘ und abgeleitete Klassen ,apple®
und ,pear”, die mit Namen (,std::string“) umgehen kénnen.

class fruit
{
public:
fruit (const stringé& name) : name (name) {}

private:
string name ;

}i

class apple : public fruit
{
public:
apple (const string& name) : fruit(name) {}

i

class pear : public fruit
{
public:
pear (const string& name) : fruit (name) {}

}i

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 20/
30

Jetzt kénnen wir Apfel und Birnen (und spater auch alle anderen von ,fruit* abgeleiteten

Obstsorten) gemeinsam behandeln. Implementieren kdnnen wir den Obstkorb jetzt mit einem

Vektor fur ,const-fruit-Zeigern“. Machen sie sich klar, dass wir hier Zeiger benétigen:

o fruit® Objekte gehen nicht, da beim Einfligen in den Container aus z.B. einem Apfel eine
Frucht werden wirde — ohne Informationen Uber den Apfel.

¢ Das eigentliche Obst-Objekt wird nur dann nicht angetastet, wenn wir mit Zeigern oder
Referenzen arbeiten. Aber Referenzen kdnnen wir nicht nehmen, da Container keine
Referenzen aufnehmen kdnnen. Also bleiben nur Zeiger ubrig.

e Und const-Zeiger, da wir die Frichte nicht verandern wollen.

class basket

{
public:
basket (const string& name) : name (name) {}

void insert (const appleé&) ;
void insert (const pearé&);

void print () const;

private:
string name ;
vector<const fruit*> fruits ;

}i

Mit der Basis-Klasse ,fruit” kann die Klasse ,basket” noch mehr vereinfacht werden, da sie
nun nur noch eine Insert-Funktion bendtigt — typisiert auf ,,const fruit&“. Diese 1aldt sich jetzt
auch direkt inline implementieren:

class basket

{
public:

void insert(const fruité& fr) { fruits .push back(&fr); }

private:
string name ;
vector<const fruit*> fruits ;

}i

Bleibt noch die Ausgabe offen — beginnen wir mit dem Obstkorb:

void basket::print () const

{
cout << "Ich bin der Obstkorb \"" << name << "\" und enthalte "

<< fruits .size() << " Fruechte:\n";
for (const fruit* p : fruits)
{
PRP
}
}

In der Schleife kdnnte man jetzt fur die jeweiligen Obstsorten eine entsprechende Ausgabe
einbauen. Aber mit jeder Veranderung einer Obstsorte (inkl. Léschen bzw. Hinzufligen)
muf3te die For-Schleife angepasst werden — keine schdne Vorstellung. Statt dessen lassen
wir sich jedes Objekt selber ausgeben, und dank Polymorphie ist das ganz einfach: Wir

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 21/
30

definieren einfach eine virtuelle Print-Funktion in der Basis-Klasse ,fruit“, und Uberschreiben
sie angepasst in den abgeleiteten Klassen ,apple“ und ,pear — z.B. so:

class fruit

{

public:
fruit (const string& name) : name (name) {}
virtual void print () const {}
protected:
const string& name () const { return name ; }
private:

string name ;

}i

class apple : public fruit
{

public:
apple (const string& name) : fruit(name) {}
void print () const override { cout << name () << " (Apfel)"; 1}

}i

class pear : public fruit

{

public:
pear(const string& name) : fruit (name) {}
void print () const override { cout << name () << " (Birne)"; }

}i
Und die Print-Funktion in ,basket® sieht jetzt so aus:

void basket::print () const
{
cout << "Ich bin der Obstkorb \"" << name << "\" und enthalte "
<< fruits_ .size() << " Fruechte:\n";
for (const fruit* p : fruits)
{
cout << "- ";
p->print() ;
cout << '\n';

Und wo wir schon mal dabei sind, eine schone Losung zu basteln... dh, zu entwickeln —
machen wir es doch ordentlich, und liefern dabei gleich noch ein Beispiel fur eine virtuelle
Indirektion flr eine freie Operator-Funktion mit.

Wir wollen die Schleife in der Print-Funktion von ,basket* schéner machen, d.h. den
Ausgabe-Operator Uberladen. Da der erste Operand des Ausgabe-Operators ein
,Std::ostream* ist, mUssen wir eine freie Operator-Funktion nehmen. Freie Funktionen
konnen nicht virtuell sein — das kénnen nur Element-Funktionen (Kap. 17.4.2). Also missen
wir eine Indirektion nehmen.

void basket::print () const
{
cout << "Ich bin der Obstkorb \"" << name << "\" und enthalte "
<< fruits_ .size () << " Fruechte:\n";
for (const fruit* p : fruits)

{

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1

Seite 2

2/
30

cout << "- " << *p << '"\n';

class fruit
{
public:
fruit (const stringé& name) name (name) {}

virtual ostreamé& print (ostream& out) const { return out;
protected:

const string& name () const { return name ; }
private:

string name ;

}i

inline ostreamé& operator<<(ostream& out,

{

const fruit& fr)

return fr.print (out) ;

}

class apple

{

public:
apple (const stringé& name)

public fruit

fruit(name) {}

ostream& print(ostreamé& out)
i

class pear

{

public:
pear (const string& name)

: public fruit

fruit (name)

{1

ostream& print (ostreamé& out)

i

17.5.3 Zusammenfassung

Und hier nochmal die gesamte Losung in einem:

#include
#include
#include <ostream>

#include <iostream>
using namespace std;

<string>
<vector>

class fruit
{
public:
fruit (const stringé& name) name (name) {}

virtual ostreamé& print (ostream& out) const { return out;
protected:

const string& name () const { return name ; }
private:

string name ;
i

inline ostreamé& operator<<(ostream& out,

{

const fruit& fr)

return fr.print (out) ;

}

class apple

{

public fruit

© Detlef Wilkening 2025

}

const override { return out << name()

const override { return out << name /()

}

<< " (Apfel)"; }

<< " (Birne)"; 1}

www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 23/
30
public:
apple (const stringé& name) : fruit(name) {}
ostream& print(ostreamé& out) const override { return out << name() << " (Apfel)"; }
}i
class pear : public fruit
{
public:
pear (const string& name) : fruit (name) {}
ostream& print (ostreamé& out) const override { return out << name() << " (Birne)'"; }

}i

class basket
{
public:
basket (const string& name) : name (name) {}

void insert(const fruité& fr) { fruits .push back(&fr);

void print () const;

private:
string name ;
vector<const fruit*> fruits ;

}i

void basket::print () const

{

cout << "Ich bin der Obstkorb \"" << name << "\" und enthalte "

<< fruits_.size() << " Fruechte:\n";
for (const fruit* p : fruits)
{
cout << "- " << *p << '"\n';
}
}

int main ()

{
basket b ("Geschenk") ;

pear frl("Bauchiger Adler");
apple fr2("Dickes Schwein");
pear fr3("Fetter Kohl"):;
(
(

apple fr4 ("Gruener Baum") ;
apple fr5("Saftiger Schmatz");

.insert (frl) ;
.insert (fr2) ;
.insert (fr3) ;
.insert (fr4) ;
.insert ()8

OO0 000

b.print();

17.5.4 Diskussion

Betrachten Sie mal die Abhangikeiten (Kennen-Beziehungen) der Klassen untereinander,
und ihre Konsequenzen bzgl. Wiederverwendung und Veranderbarkeit:

Die Klasse ,fruit” als sehr einfach Klasse ist vollkommen entkoppelt von ihrer Benutzung
(hier dem Obstkorb) und ihren konkreten Auspragungen (hier Apfel und Banane). Daher

}

sie ist von nichts und niemandem abhangig. Damit ist diese Klasse problemlos

wiederverwendbar. Sie stellt einfach eine allgemeine Sicht auf die Abstraktion Obst dar.

Da die Klasse Obstkorb nur die Klasse Obst kennt, ist hier eine kleine Kopplung
vorhanden. Trotzdem kann der Obstkorb mit beliebigen Obstsorten umgehen, ohne diese

© Detlef Wilkening 2025

www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 24/
30

kennen zu mussen. Damit kdnnen Obstsorten entfernt, hinzugeflugt oder ihr Verhalten
verandert werden, ohne dass der Obstkorb umprogrammiert werden muss.

e Das Standard-Verhalten von Obst kann in der Basis-Klasse einmal gesammelt werden,
kann aber in konkreten Obstsorten verandert werden.

¢ Alles apfel-spezifische ist in der Klasse Apfel zusammengefasst. Diese Klasse
implementiert nur die Klasse Obst - die einzige Kopplung.

o Um das Beispiel um weitere Obstsorten zu erweitern, muss nur eine neue Obstsorten-
Klasse von Obst abgeleitet werden und in das Haupt-Programm eingefligt werden. Das
restliche Programm ist vollkommen von dieser Anderung entkoppelt und muss nicht
verandert werden. Analoges gilt beim Entfernen oder Verandern von Obstsorten.

Mit Polymorphie ist es jetzt noch viel viel wichtiger geworden, die Implementierungen auf ihre
Abstraktions-Ebenen zu beschranken und die Aufgaben zu delegieren. War es vorher schon
sehr sehr schlechter Stil, Objekt-Zustande abzufragen und selber damit zu arbeiten, so wird
diese Vorgehensweise jetzt essentiell.

17.6 Destruktoren

Destruktoren sind normale Element-Funktionen:

class A
{
public:
~A() { cout << "- De. A\n"; }
}i

class B : public A
{
public:
~B() { cout << "- De. B\n"; }
i

int main ()

{
cout << "Zeiger vom Typ B*\n";
B* pb = new B();
delete pb;

cout << "Zeiger vom Typ A*\n";
A* pa = new B() ;
delete pa; // Achtung - undefiniertes Verhalten

}

Ausgabe
Zeiger vom Typ B*
- De. B
- De. A
Zeiger vom Typ A¥*
- De. A

Wie man an der Ausgabe des Beispiels sieht, wird daher bei Objekten die Uber Basis-
Klassen-Zeiger geldscht werden, nur der Destruktor der Basisklasse aufgerufen. Ein
Destruktor ist halt eine normale Element-Funktion, und wird daher defaultmaRig statisch
gebunden, d.h. der Destruktor-Aufruf wird Uber den statischen Typ festgelegt. Hierbei

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 25/
30

kénnen aber auch noch andere Fehler auftreten, die unser Beispiel nicht zeigt. Letztlich ist
das Loschen Uber einen Basisklassen-Zeiger mit einem nicht-virtuellen Destruktor nicht
erlaubt und erzeugt ,,undefined behaviour®.

Die Losung besteht naturlich darin, den Destruktor virtuell zu machen. Da der implizite
Destruktor nicht virtuell ist, mUssen wir in diesem Fall immer selber einen erzeugen - und sei
er auch leer. Im einfachsten Fall wird in die Basis-Klasse ein leerer virtueller Destruktor
eingefugt. Dann wird auch der Destruktor dynamisch gebunden, und damit immer der
Destruktor der abgeleiteten Klasse aufgerufen, und au3erdem funktioniert die
Speicherfreigabe korrekt.

class A
{
public:
virtual ~A() {}
i

class B : public A
{
public:
virtual ~B() { cout << "- De. B\n"; }
bi

int main ()

{
cout << "Zeiger vom Typ B*\n";
B* pb = new B() ;
delete pb;

cout << "Zeiger vom Typ A*\n";
A* pa = new B() ;
delete pa;

}

Ausgabe
Zeiger vom Typ B*
- De. B
Zeiger vom Typ A¥*
- De. B

Regeln

e Da Sie nie wissen konnen, wie lhre Klasse mal benutzt wird, sollten Sie sich nur von
Klassen ableiten, die einen virtuellen bzw. protected Destruktor haben.

e Umgekehrt sollten Sie immer, wenn Sie eine Basis-Klasse entwickeln, einen virtuellen
Destruktor implementieren — auch wenn dieser leer ist.

e Sie sollten jetzt nicht Gbertreiben und blof3 nicht jeder Klasse einen virtuellen Destruktor
geben. Sobald eine Klasse mindestens eine virtuelle Funktion hat, wird sie grofer, ihre
Benutzung wird unter Umstanden langsamer, und falls sie vorher ein POD war so wirde
sich das nun andern.

Hinweis — im Prinzip kdnnte man auf den virtuellen Destruktor verzichten, wenn man sicher
sein konnte, dass Objekte nie dynamisch Uber einen Basis-Klassen-Zeiger geldscht werden.
In der STL gibt es einige solcher Falle, bei denen die Basis-Klassen nur z.B. Typedefs zur
Verfugung stellen, und ansonsten keine semantische Bedeutung haben. Aber dies sind
Ausnahmen — halten Sie sich lieber an obige Regeln, dann sind sie auf der sicheren Seite.

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 26/
30

17.7 Abstrakte Basis-Klassen

Wir erinnern uns an unseren Obstkorb mit vielen Friichten, die durch eine Basis-Klasse ,fruit”
reprasentiert wurden. Nur gibt es kein ,Obst“ Objekt an sich, sondern nur z. B. Bananen,
Apfel, Birnen, usw. Darum sollten sich von der Klasse ,fruit“ eigentlich keine Objekte
erzeugen lassen, da sie keinen Sinn machen.

AuRRerdem hat man haufig das Problem, dass man nicht weil3, wie man Funktionen in der
Basis-Klasse implementieren soll. Die Print-Funktion z.B. in ,fruit* wurde leer gelassen, da
jede abgeleitete Klasse sie Uberschreiben soll, und die Basis-Klasse keine gute Default-
Implementierung anbieten kann.

Mit unseren aktuellen Kenntnissen kénnen wir das Erzeugen von Basis-Klassen-Objekten
schon sehr einschranken — ist ihnen klar wie? Machen sie doch einfach den oder die
Konstruktoren ,protected®, dann kdnnen sie nur aus der Klasse selber, aus abgeleiteten
Klassen, oder von Friends aus aufgerufen werden.

class A

{
public:
virtual ~A() {}

protected:
AQ) {}
}i

Aber diese Losung hat halt Licken, und sie adressiert nicht das Problem der unméglichen
Funktions-Implementierungen. Aber C++ hat ein Sprachmittel fir beide Probleme:

Abstrakte Klassen mit rein virtuellen Funktionen

Abstrakte Klassen sind Klassen, von denen keine Objekte erzeugt werden kdnnen. Eine

Klasse ist dann abstrakt, wenn sie mindestens eine rein-virtuelle Funktion besitzt (auch
durch Vererbung).

Rein-virtuelle Funktionen sind normale virtuelle Funktionen, die in der Basis-Ebene (im
Normalifall) keine Implementierung haben und zwingend in den abgeleiteten Klassen
Uberschrieben werden mussen. Deklariert werden sie in der KlassenDefinition mit einem = 0.

class A
{
public:

virtual void f() = 0;
bi
A a; // Compiler-Fehler - von abstrakten Klassen kann kein Objekt erzeugt werden
class A
{
public:

virtual void f() = 0;
}i

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 27/
30

class B : public A { };

class C : public B
{
public:
virtual void f£() {}
i

A a; // Compiler-Fehler, da abstrakte Klasse
B b; // Compiler-Fehler, da abstrakte Klasse (durch Vererbung)
€ @s // okay

Was fir einen Sinn haben abstrakte Klassen?

e Sie verhindern, dass von diesen Klassen Objekte gebildet werden.

e Sie erzwingen, dass bestimmte Funktionen (die rein-virtuellen) Gberschrieben werden.

e Aulerdem stellen sie ein allgemeines Interface flr verschiedene Implementierungen dar.

Man bezeichnet Basis-Klassen, vor allem abstrakte Basis-Klassen —im Extrem solche mit
nur rein-virtuellen-Funktionen — gerne als Interface. Sie stellen eine allgemeine Sicht auf eine
Abstraktion dar (z.B. fruit fur alle Obstsorten), und bilden quasi die Schnittstelle zu den
konkreten Klassen.

17.8 Dynamic-Cast

In sehr seltenen Fallen ist es nétig, einen Objekt-Zeiger oder eine Objekt-Referenz in der
Klassen-Hierarchie hinauf zu den abgeleiteten Klassen zu casten.

Dieser Cast ist — wie eigentlich alle Casts — nicht unproblematisch. Hier ist der Cast aber
besonders problematisch, denn es ist zur Compilezeit oft nicht bestimmbar, ob sich der
Quell-Ausdruck Uberhaupt in den Ziel-Typ umwandeln Iaft.

class A
{
public:
virtual ~A() {}
virtual void f();
}i

class B : public A {};

class C : public A
{
public:
void g();
bi

void fct (A* pa)
{
pa->g(); // Wie kann ich daraus einen C-Zeiger machen?
// Und was ist, wenn es kein Objekt vom Typ C ist, sondern z.B. ein B?

Mit dynamic_cast existiert in C++ ein Cast fur Klassen-Hierarchien. Fur ihn gilt:
e Quell- und Ziel-Typ mussen in einer gemeinsamen Klassen-Hierarchie liegen, oder der
Zieltyp muss ‘void*’ sein. Mit Quell-Typ ist der statische Typ des Quell-Ausdrucks

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 28/

30

gemeint.

Der Quell-Typ muss polymorph sein, d.h. er muss mindestens eine virtuelle Funktion
enthalten.

Der Ziel-Typ muss nicht polymorph sein.

Ein Dynamic-Cast kann nur auf Zeiger und Referenz-Typen ausgefuhrt werden.

Der Dynamic-Cast wird nur ausgefuhrt, wenn der Quell-Ausdruck dem Ziel-Typ entspricht.
Die Konvertierung findet zur Laufzeit statt - sie ist daher langsamer als andere Casts.

Ein Dynamic-Cast geht korrekt mit virtuellen Adressen bei Mehrfach-Vererbung um.

Ein Dynamic-Cast kann keinen const Modifizierer entfernen.

Wird ein nicht korrekter Cast versucht, so wird:

bei Zeigern ein Null-Zeiger zurickgegeben, und
bei Referenzen eine std::bad_cast Exception geworfen.

// Klassen A, B und C wie oben

void f1(A* pa)
{
cout << "> fl1\n";
if (C* pc = dynamic cast<C*>(pa))
{
pc—>g () ;
}
else
{
cout << " Null-Zeiger\n";
}
}

void f£2 (A& ra)
{
cout << "> f2\n";
try
{
dynamic_cast<C&>(ra).g() ;
}
catch (const std::bad cast& x)
{
cout << " Exception: " << x.what() << '\n';
}
}

int main ()
{
A a;
cout << "A\n";
fl(&a);
f2(a);

B b;

cout << "\nB\n";
f1(&b);

f2 (b) ;

C eg
cout << "\nC\n";
fl(&c);
f2(c);
}

Ausgabe

A
> fl

Null-Zeiger

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 29/
30

> f2
Exception: Bad dynamic cast!

> f1
Null-Zeiger
> f2
Exception: Bad dynamic cast!

> fl
C::g()

> f2
C::g()

Bemerkung — auch mit den Sicherheiten von ,dynamic_cast® ist ein Cast ein Cast und bleibt
ein Cast. Auch wenn er relativ schon und sicher ist. Cast’s sind und bleiben ein Werkzeug fir
absolute Ausnahme-Situationen. Im Normallfall benétigen sie bei einem ‘vernunftigen’
Design keine Cast’s, auch kein ,dynamic_cast®.

17.9 Vererbung & Polymorphie

17.9.1 Semantik

Uber die Semantik dieser neuen Sprachmittel lassen sich folgende Faustregeln aufstellen:

e Eine gemeinsame Basis-Klasse bedeutet gemeinsame Aufgaben.

» Offentliche Erblichkeit bedeutet "ist-ein".

e Eine rein-virtuelle Funktion bedeutet, dass die Schnittstelle der Funktion geerbt wird.

e Eine virtuelle Funktion bedeutet, dass die Schnittstelle und eine Standardimplementierung
geerbt werden.

e Eine nicht-virtuelle Funktion bedeutet, dass die Schnittstelle inkl. obligatorischer
Funktionen geerbt wird.

e Oberbegriffe (Basis-Klassen) sind ein Hilfsmittel zur Abstraktion und bilden ein
gemeinsames Interface aller abgeleiteten Klassen.

e Polymorphie bedeutet, dass eine Funktion, je nach Objekt, angepasst reagiert.

17.9.2 Begriff ,,Polymorphie“

Mit Vererbung und virtuellen Funktionen wird in C++ Polymorphie (Vielgestaltigkeit) realisiert.
Mit Polymorphie ist gemeint, dass eine Funktion vielgestaltig ist, d. h. in Abhangigkeit vom
Kontext unterschiedlich (angepasst) reagiert. Genau genommen reagiert nicht eine Funktion
unterschiedlich, sondern es werden unterschiedliche Funktionen aufgerufen.

Der Begriff Polymorphie wird in der Literatur sehr unterschiedlich benutzt:

1. Einige bezeichnen schon jeden Aufruf einer Element-Funktion als Polymorphie, da jede
Klasse die gleichen Funktions-Namen enthalten kann, und daher in Abhangigkeit vom
Objektbezug unterschiedliche Funktionen aufgerufen werden.

© Detlef Wilkening 2025 www.wilkening-online.de

Objektorientiertes Programmieren in C++ (WS2025/26) — Teil 10 — Version 1 Seite 30/
30

2. Manche bezeichnen Uberladen als Polymorphie, da hier unterschiedliche Funktionen in
Abhangigkeit von den Parametern aufgerufen werden.

3. Ich beschranke mich hier bei dem Begriff Polymorphie (im Einklang mit dem Grossteil der
OO Literatur) auf die Wirkungsweise von dynamisch gebundenen (in C++ also virtuellen)
Funktionen. Manchmal wird dies in C++ auch dynamische Polymorphie genannt.

17.9.3 Schlusselkonzepte

Mit Vererbung und vor allem Polymorphie haben wir die Schliisselkonzepte der
objektorientierten Programmierung kennengelernt. Immer, wenn sie eine Menge an
ahnlichen Dingen, verwalten, bearbeiten, oder sonstwas mussen, bietet sich Polymorphie als
eine elegante Losung an.

Ob Sie nun

¢ ein Spiel mit unterschiedlichen Spielern entwickeln, die auf unterschiedlichen Planeten
leben, in dem unterschiedliche Raumschiffe mit unterschiedlichen Waffen vorkommen,...

e oder ein Programm zur Kontoflhrung unterschiedlicher Konten,

e oder, oder, oder....

Immer bieten sich Vererbung und Polymorphie als einfache, elegante und leistungsfahige

Designmittel an. Daher finden sie sich auch immer wieder als zentrale Konzepte in Pattern,

Frameworks, Bibliotheken und Programmen wieder.

Wenn Sie es schaffen, dass eine Programm-Struktur (die Architektur) nur auf abstrakten
Klassen beruht, kdnnen Sie die konkreten Implementierungen verandern, ersetzen, I6schen,
erganzen und umstrukturieren, ohne dass Sie die Programm-Struktur nur ein einziges Mal
andern mussen. Damit hatten Sie einen sehr hohen Grad an Erweiterbarkeit und
Anderbarkeit erreicht.

© Detlef Wilkening 2025 www.wilkening-online.de

