
Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 1 / 30

© Detlef Wilkening 2025 www.wilkening-online.de

Vorlesung

Objektorientiertes

Programmieren

in

C++

Teil 10 - WS 2025/26

Detlef Wilkening

www.wilkening-online.de

© 2025

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 2 / 30

© Detlef Wilkening 2025 www.wilkening-online.de

17 Vererbung & Polymorphie .. 2

17.1 Intermezzo ... 2

17.2 Vererbung .. 2

17.3 Konsequenzen aus der „ist-ein“ Beziehung .. 12

17.4 Polymorphie ... 15

17.5 Beispiel „Obstkorb“ .. 18

17.6 Destruktoren .. 24

17.7 Abstrakte Basis-Klassen.. 26

17.8 Dynamic-Cast .. 27

17.9 Vererbung & Polymorphie ... 29

17 Vererbung & Polymorphie

17.1 Intermezzo

Wenn wir mehr Zeit für die Vorlesung hätten, dann kämen jetzt erstmal einige andere

Themen an die Reihe. Aber wir nähern uns dem Ende der Vorlesung, darum müssen wir

fokussieren. Und C++ hat zwei große zentrale Themen. Da ist zum einen die generische

Programmierung mit Templates, die in der Vorlesung leider viel zu kurz gekommen sind. Und

zum anderen die objekt-orientierte Programmierung mit Klassen, Vererbung und

Polymorphie – und dieses Thema muß in der Vorlesung rein. Darum sind wir jetzt in diesem

Kapitel.

Leider ist es so, dass wir eigentlich die Kapitel dazwischen benötigen würden. Dann bei

„dynamic_cast“ (siehe Kap. 18.8) können Exceptions fliegen, also bräuchten wir sie

eigentlich. Vererbung und Polymorphie geht in C++ fast immer mit dynamischer

Speicherverwaltung einher, und die basiert in modernem C++ auf Smart-Pointern, und die

basieren auf den normalen C-Zeigern. Also bräuchten wir das alles. Und dafür wären auch

Exceptions wieder notwendig.

Aber all diese Themen passen zeitlich nicht mehr. Darum machen wir den großen Sprung.

Wenn Sie in den Beispielen Zeiger, dynamische Speicherverwaltung oder Exceptions sehen,

dann ignorieren Sie sie im Detail. Die wichtigen Grundlagen von Vererbung und Polymorphie

sind auch ohne dieses Wissen verständlich, und die meisten Beispiele kommen ohne diese

Dinge aus. Und außerdem haben ja die meisten von Ihnen im letzten Semester C gehört,

und da gehören Zeiger zum Inhalt. Das heißt, Sie kennen zumindest das prinzipielle Konzept

mehr als gut genug.

17.2 Vererbung

Vererbung (genau genommen „öffentliche Vererbung“) ist die Modellierung einer "ist-ein"

Beziehung. Eine „ist-ein“ Beziehung meint, dass jedes Objekt der abgeleiteten Klasse ein

Objekt der Basis-Klasse ersetzen kann, ohne dass es sematische Probleme gibt.

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 3 / 30

© Detlef Wilkening 2025 www.wilkening-online.de

Eine „ist-ein“ Beziehung in der normalen Welt

Immer dann, wenn die zu modellierende Domaine „ist-ein“ Beziehungen enthält, bietet sich

damit „öffentliche Vererbung“ als eine sinnvolle Modellierungs-Strategie an. Bevor wir hier

aber tiefer einsteigen, lassen sie uns das Konzept der Vererbung noch mal detaillierter

betrachten, und einige Begriffe definieren.

Eine abstrakte ganz allgemeine „ist-ein“ Beziehung

Hierbei ist:

• A Basis-Klasse (von B und C)

• B ist abgeleitet von A => B ist ein A => alles was für A gilt, gilt auch für B

• C ist abgeleitet von A => C ist ein A => alles was für A gilt, gilt auch für C

In Richtung der abgeleiteten Klassen findet eine Spezialisierung statt:

• B ist eine Spezialisierung von A

• Ein Pferd ist eine Spezialisierung eines Säugetiers

• Alles, was für Säugetiere gilt (z. B. Alter, Gewicht, ...), gilt auch für Pferde. All diese

Attribute und Funktionen erbt Pferd von Säugetier.

In Richtung der Basis-Klassen findet eine Generalisierung oder Verallgemeinerung

statt – Basis-Klassen fassen gemeinsame Dinge der abgeleiteten Klassen zusammen:

• A enthält alle Gemeinsamkeiten von B und C.

• Vogel enthält alles Vogel-typische, unabhängig, ob es sich um eine Amsel oder eine Möve

handelt.

Hinweise

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 4 / 30

© Detlef Wilkening 2025 www.wilkening-online.de

• Die abgeleitete Klassen (z. B. B und C) sind unabhängig voneinander.

• Von einer Klasse können beliebig viele andere Klassen abgeleitet werden.

• Eine Klasse kennt die von ihr abgeleiteten Klassen nicht.

• Umgekehrt kennt die abgeleitete Klasse natürlich ihre Basis-Klasse.

• Ein Basis-Klasse wird oft auch Super-Klasse genannt.

• Eine abgeleitete Klasse wird oft auch Sub- oder Unter-Klasse genannt.

Hinweis – alle Vererbungen in diesem Kapitel sind Einfach-Vererbungen („single

inheritance“), d. h. eine Klasse hat genau eine Basis-Klasse. C++ unterstützt auch

Mehrfach-Vererbung („multiple inheritance“), die aus Zeitmangel leider nicht behandelt wird.

17.2.1 Implementation

Wie wird Vererbung in C++ implementiert?

Syntax

class Klassen-Name : [Vererbungs-Spezifizierer] Basis-Klasse { ... };

class A

{

public:

 int ai;

 void af();

};

class B : public A // Definition Klasse B oeffentlich abgeleitet von A

{

public:

 int bi;

 void bf();

};

int main()

{

 A a;

 B b;

 a.ai=7; // okay

 a.af(); // okay

 a.bi=8; // Compiler-Fehler - A hat keine Varibale bi

 a.bf(); // Compiler-Fehler - A hat keine Funktion bf()

 b.ai=9; // okay - B hat Variable ai von A geerbt

 b.af(); // okay - B hat Funktion af() von A geerbt

 b.bi=10; // okay

 b.bf(); // okay

}

A

B

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 5 / 30

© Detlef Wilkening 2025 www.wilkening-online.de

Klassen-Hierarchie des Beispiels

Hinweis – die abgeleitete Klasse erbt die Funktionalität der Basis-Klasse, was man daran

sieht, dass das Objekt der abgeleiteten Klasse „B“ die Funktionen und Attribute von „A“

besitzt, ohne dass sie explizit programmiert werden mussten.

Die Vererbungshierarchie lässt sich beliebig fortsetzen, z.B. in dem man zusätzlich eine

Klasse „C“ von „B“ ableitet:

A

B

C

Klassen-Hierarchie des erweiterten Beispiels

// Klasse A und B wie eben

class C : public B

{

public:

 int ci;

 void cf();

};

int main()

{

 C c;

 c.ai=11; // okay - C hat Variable ai von B (wiederum von A) geerbt

 c.af(); // okay - C hat Funktion af() von B (wiederum von A) geerbt

 c.bi=12; // okay - C hat Variable bi von B geerbt

 c.bf(); // okay - C hat Funktion bf() von B geerbt

 c.ci=13; // okay

 c.cf(); // okay

}

Welche Elemente enthalten die einzelnen Klassen nun?

Klasse Attribut Element-Funktionen

A ai af()

B ai

bi

af()

bf()

C ai af()

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 6 / 30

© Detlef Wilkening 2025 www.wilkening-online.de

bi

ci

bf()

cf()

Denn

• B ist ein A

• C ist ein B

• C ist ein A (Vererbung ist transitiv)

17.2.2 Konstruktoren

Konstruktoren müssen meist neu definiert werden, da sie Default mäßig nicht vererbt

werden. Dies ist vernünftig, da ein ererbter Konstruktor nicht wissen kann, wie er die neuen

nicht-ererbten Attribute initialisieren soll.

Wird ein Objekt einer abgeleiteten Klasse erzeugt und ist für die Basis-Klasse kein spezieller

Konstruktor angegeben, so wird automatisch der Standard-Konstruktor der Basis-Klasse für

den Basis-Klassenanteil des Objekts genommen.

class A

{

public:

 A() { cout << "Konstruktor A\n"; }

};

class B : public A // B abgeleitetet von A

{

public:

 B() { cout << "Konstruktor B\n"; }

};

int main()

{

 B b;

}

Ausgabe

Konstruktor A

Konstruktor B

Hat die Basis-Klasse keinen Standard-Konstruktor, so muss der gewünschte Konstruktor in

der Initialisierungsliste der abgeleiteten Klasse angegeben werden.

class A

{

public:

 A(int);

};

A::A(int i)

{

}

class B : public A // B abgeleitetet von A

{

public:

 B();

 B(int);

};

B::B() // Compiler-Fehler, kein Standard-Konstruktor

{

}

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 7 / 30

© Detlef Wilkening 2025 www.wilkening-online.de

B::B(int i) // okay, explizite Angabe des Konstruktors

 : A(i)

{

}

Beim Konstruieren eines Objekts wird vor den Konstruktoren der Attribute der Konstruktor

der Basis-Klasse aufgerufen. Die Basis-Klasse verhält sich bzgl. der Erstellung eines Objekts

quasi wie ein Attribut, das als erstes in der Klassen-Definition steht.

class attribut

{

public:

 attribut(int i) { cout << "attribut(" << i << ")\n"; }

};

class base

{

public:

 base() : attribut_(1) { cout << "base()\n"; }

private:

 attribut attribut_;

};

class derived : public base

{

public:

 derived() : attribut_(2), base() { cout << "derived()\n"; }

private:

 attribut attribut_;

};

int main()

{

 derived d;

}

Ausgabe

attribut(1)

base()

attribut(2)

derived()

Hinweis – obwohl in der Initialiisierung von „B()“ das Attribut „attribut_“ vor der Basis-Klasse

„A“ angegeben ist, wird die Basis-Klasse vor dem Attribut der abgeleiteten Klasse

konstruiert. Die Reihenfolge der Konstruktion ist durch die Vererbungsbeziehung und die

Klassen-Definition festgelegt.

Was passiert genau?

1. Speicherplatz reservieren

2. Aufruf des Konstruktors der Basis-Klasse:

a) Aufruf der Konstruktoren der Attribute der Basis-Klasse (Reihenfolge Definition)

b) Ausführen des Konstruktor-Rumpfs der Basis-Klasse

3. Aufruf der Konstruktoren der Attribute der abgeleiteten Klasse (Reihenfolge Definition)

4. Ausführen des Konstruktor-Rumpfs der abgeleiteten Klasse

Durch diese Reihenfolge ist gewährleistet, dass jedes Objekt immer einen stabilen Zustand

der ihm zugrunde liegenden Teil-Objekte sieht.

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 8 / 30

© Detlef Wilkening 2025 www.wilkening-online.de

17.2.3 Destruktoren

Auch Destruktoren werden nicht vererbt.

Die Destruktoren werden umgekehrt abgearbeitet, d. h. von der abgeleiteten Klasse bis hin

zur Basis-Klasse. Es werden automatisch alle Destruktoren des Vererbungszweiges

durchlaufen.

class attribut

{

public:

 attribut(int i) : n_(i) { cout << "attribut(" << n_ << ")\n"; }

 ~attribut() { cout << "~attribut(" << n_ << ")\n"; }

private:

 int n_;

};

class base

{

public:

 base() : att_(1) { cout << "base()\n"; };

 ~base() { cout << "~base()\n"; };

private:

 attribut att_;

};

class derived : public base

{

public:

 derived() : att_(2) { cout << "derived()\n"; };

 ~derived() { cout << "~derived()\n"; };

private:

 attribut att_;

};

int main()

{

 derived d;

}

Ausgabe

attribut(1)

base()

attribut(2)

derived()

~derived()

~attribut(2)

~base()

~attribut(1)

Durch diese Reihenfolge ist gewährleistet, dass auch bei der Zerstörung einer Objekts jedes

Teil-Objekt immer einen stabilen Zustand der ihm zugrunde liegenden Objekte sieht.

17.2.4 Qualifizierter Name

Manchmal ist es nötig, Symbole einer Klasse anzusprechen, die eigentlich nicht sichtbar

sind, da sie überschrieben oder verdeckt sind. In diesem Fall muss das Symbol über den

Namen der Klasse, den Scope-Resolution Operator und den eigentlichen Namen referenziert

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 9 / 30

© Detlef Wilkening 2025 www.wilkening-online.de

werden.

class A

{

public:

 void f();

};

class B : public A

{

public:

 void g();

};

void B::g()

{

 A::f(); // expliziter Aufruf der Element-Funktion f der Klasse A

}

int main()

{

 B b;

 b.g();

 b.A::f(); // expliziter Aufruf der Element-Funktion f der Klasse A

}

Hinweis – da wir Überschreiben und Verdeckung noch nicht kennen, ist das Beispiel etwas

hergeholt, aber mit dem nächsten Kapitel wird sich das ändern.

17.2.5 Überschreiben von Funktionen I

Eine abgeleitete Klasse erbt von der Basis-Klasse u.a. ihr Verhalten - die Funktionen. Das

ererbte Verhalten muss für die abgeleitete Klasse aber nicht korrekt sein. In manchen Fällen

ist es komplett falsch, in anderen stimmt das Prinzip, aber im Detail gibt es Abweichungen. In

solchen Fällen kann die ererbte Funktion von der abgeleiteten Klasse überschrieben werden.

Achtung – das „Überschreiben“, wie es in diesem Kapitel vorgestellt wird, ist noch nicht das

Richtige Überschreiben, und arbeitet in manchen Situationen fehlerhaft. Erst mit virtuellen

Funktionen wird Überschreiben vollständig – das folgt gleich.

Falls die Implementierung einer Basis-Klassen Element-Funktion nicht passend ist, kann sie

in einer abgeleiteten Klasse neu implementiert, d. h. komplett überschrieben werden.

class A

{

public:

 void f() { cout << "A::f()\n"; }

};

class B : public A

{

public:

 void f() { cout << "B::f()\n"; }

 void g()

 {

 f(); // ruft B::f() auf

 A::f(); // ruft A::f() auf

 }

};

int main()

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 10 /

30

© Detlef Wilkening 2025 www.wilkening-online.de

{

 A a;

 B b;

 a.f(); // ruft A::f() auf

 b.f(); // ruft B::f() auf

 b.A::f(); // ruft A::f() auf

 b.g();

}

Ausgabe

A::f()

B::f()

A::f()

B::f()

A::f()

Auf die Art und Weise kann eine nicht passende Implementierung einer Basis-Klasse in einer

abgeleiteten Klasse neu implementiert, d. h. überschrieben werden.

Ein Beispiel wäre eine Funktion „get_salary“ in einer Klasse „employee“ und in der

abgeleiteten Klasse „sales_manager“. Ein Vertriebsleiter ist sicherlich ein Angestellter, d.h.

für ihn gelten die Funktionen get_name(), get_personnel_no(), usw – von daher sieht

Vererbung nach der korrekten Modellierung aus. Aber während Angestellte meist ein Fest-

Gehalt beziehen, wird bei einem Vertriebsleiter oft eine Umsatz-Beteiligung eingerechnet.

Von daher ist die „get_salary“ Implementierung der Basis-Klasse sicher nicht richtig.

class employee

{

public:

 const std::string& get_name() const;

 int get_personnel_no() const;

 money get_salary() const;

 ...

};

class sales_manager : public employee

{

public:

 money get_salary() const;

 ...

};

Hinweis – oft ist es so, daß die Basis-Klassen Implementierungen gar nicht so schlecht sind,

aber eben nicht 100% passen. Vielleicht bekommt der Vertriebsleiter zusätzlich zu einem

Festgehalt einen variablen Anteil hinzu – in diesem Fall wäre die Basis-Klassen

Implementierung mit dem Festgehalt ja nicht falsch, sondern eben nur ein Teil der korrekten

Implementierung. Darum ist es oft sinnvoll in einer Neu-Implementierung auf die Basis-

Klassen Implementierung zurückzugreifen.

Dafür wird dann immer die vollständige Referenzierung (oder Qualifizierung) mit dem Basis-

Klassen Namen benötigt – ansonsten würde eine Endlos-Rekursion entstehen, denn dann

würde die Funktion sich ja immer selbst aufrufen.

void derived::fct()

{

 ...

 base::fct(); // expliziter Aufruf der Original-Element-Funktion

 ...

}

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 11 /

30

© Detlef Wilkening 2025 www.wilkening-online.de

17.2.6 Zugriffsbereich protected

Zusätzlich zu den Zugriffsbereichen public und private gibt es Außerdem noch protected.

Der Zugriffsbereich protected liegt in seiner Wirkung zwischen public und private.

Im Gegensatz zu private kann auf Elemente im Zugriffsbereich protected auch noch von

abgeleiteten Klassen zugegriffen werden.

class A

{

public:

 void fpublic();

protected:

 void fprotected();

private:

 void fprivate();

};

class B : public A

{

public:

 void f();

};

void B::f()

{

 fpublic(); // okay - Aufruf von A::fpublic()

 fprotected(); // okay - Aufruf von A::fprotected()

 fprivate(); // Compiler-Fehler - A::fprivate() ist nicht erreichbar

}

int main()

{

 A a;

 a.fpublic(); // okay - Aufruf von A::fpublic()

 a.fprotected(); // Compiler-Fehler - A::fprotected() ist nicht erreichbar

 a.fprivate(); // Compiler-Fehler - A::fprivate() ist nicht erreichbar

}

Achtung – beachten Sie bitte, dass bzgl. aller abgeleiteten Klassen der protected-Bereich

mit zur öffentlichen Schnittstelle, d. h. zum Interface gehört und entsprechend designt

werden sollte. Legen Sie d.h. auch in den protected-Bereich keine Datenelemente.

17.2.7 Vererbungs-Spezifikationen

In C++ gibt es drei Vererbungs-Spezifikationen:

public

protected

private default bei class

Normalerweise wird nur die public-Vererbung benutzt, die semantisch einer “ist-ein“

Beziehung entspricht. Dem gegenüber modellieren protected- und private-Vererbungen

eine „ist-implementiert-mit“ bzw. eine „hat-ein“ Beziehung, die spezielle Möglichkeiten

bietet. Außerdem wird mit der Vererbungs-Spezifikationen wird bestimmt, wie die

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 12 /

30

© Detlef Wilkening 2025 www.wilkening-online.de

Zugriffsbereiche der Basis-Klasse den Zugriffs-Bereichen der abgeleiteten Klasse

zugeordnet werden.

Hinweis – in der Praxis sind 99,9% aller Fälle öffentliche Vererbung – fast alle anderen

Sprachen kennen auch nur diese Art der Vererbung.

Achtung – ein gern gemachter Fehler in C++ ist das Vergessen des Vererbungs-

Spezifizierers „public“, wodurch eine private Vererbung mit anderer Semantik und anderem

Verhalten entsteht.

17.3 Konsequenzen aus der „ist-ein“ Beziehung

Ganz im Sinne der „ist-ein“ Semantik können in C++ Objekte einer öffentlich-abgeleiteten

Klasse auch immer für Objekte der Basis-Klasse stehen. Dies hat mehrere Konsequenzen.

17.3.1 Konsequenz 1

Wird in einem Ausdruck ein Objekt einer Basis-Klasse erwartet, so kann auch immer ein

abgeleitetes Objekt als Argument benutzt werden. Dies betrifft z.B. Funktions-Aufrufe oder

Zuweisungen, gilt aber für alle Arten von Ausdrücken.

class A { };

class B : public A { };

void f(A)

{

}

int main()

{

 B b;

 f(b); // okay - B Objekt wird als A benutzt, da B ein A ist

 A a;

 a = b; // okay - B Objekt wird als A benutzt, da B ein A ist

}

In diesem Beispiel wird „b“ in beiden Ausdrücken automatisch in ein A-Objekt gewandelt -

hierbei geht jede Information über den eigentlichen Typ verloren, d.h. in der Funktion „f“ ist

der Parameter wirklich ein A-Objekt, und auch das „a“ ist nur ein „A“ und mehr nicht.

17.3.2 Konsequenz 2

Da ein Objekt einer abgeleiteten Klasse immer für ein Objekt einer Basis-Klasse stehen

kann, muss dies auch für jegliche Art von Referenzen auf Basis-Klassen-Objekte stimmen.

class A { };

class B : public A { };

int main()

{

 B b;

 A* p = &b; // okay - denn ein B "ist ein" A

 A& r = b; // okay - denn ein B "ist ein" A

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 13 /

30

© Detlef Wilkening 2025 www.wilkening-online.de

}

Auch dies ist ganz im Sinne der „ist-ein“ Semantik. Es ist ja auch korrekt, wenn sie z.B. auf

ein Auto zeigen und sagen: „Dies ist eine Maschine“, obwohl sie dabei eine sehr allgemeine

Abstraktion benutzen, aber ein Auto ist eben eine Maschine.

Hierbei verliert das Objekt auch nicht seine Identität, das es nicht kopiert, zugewiesen oder

sonstwie verändert wird. Es bleibt im Speicher ganz normal bestehen, und wird nur von

außen über verschiedene Typen referenziert.

17.3.3 Statischer und dynamischer Typ

Man unterscheidet in C++ den sogenannten statischen und den dynamischen Typ.

• Der statische Typ ist der Typ, den der Compiler sieht, da er ohne wenn und aber zur

Compilezeit feststeht und eindeutig bekannt ist. Im Beispiel sind dies die Typ-Varianten

von “A“ der Variablen „p“ und „r“.

• Dem gegenüber ist der dynamische Typ der echte Typ des Objekts, auf das verwiesen

wird. Dieser ist zur Compilezeit nicht zwingend bekannt, und muss nicht dem statischen

Typ entsprechen. Im Beispiel ist der dynamische Typ des referenzierten Objekts „B“,

obwohl der statische Typ „A“ ist.

class A { };

class B : public A { };

int main()

{

 B b; // statischer Typ ist "B", dynamischer Typ auch

 A* p = &b; // statischer Typ ist "A*", der dynamische Typ kann mehr sein...

 A& r = b; // statischer Typ ist "A&", der dynamische Typ kann mehr sein...

 int n; // statischer Typ ist "int", dynamischer Typ auch

 int& ri = n; // statischer Typ ist "int&", dynamischer Typ auch

}

Der dynamische Typ kann sich nur dann vom statischen Typ unterscheiden, wenn:

• die Variable ein Zeiger oder eine Referenz ist, und

• der statische Typ eine Klasse ist, von der es Ableitung geben kann.

17.3.4 Diskussion

Falls Sie das Ganze etwas verwundert, machen Sie sich mal von der ganzen Computerei

frei, und betrachten das Ganze mit einem normalen Beispiel: Wenn Sie z.B. auf einen Stuhl

zeigen und sagen „das ist ein Stuhl“, dann wird Ihnen wohl niemand widersprechen. Aber

auch die Aussage „das ist ein Möbelstück“ wäre ohne Frage richtig.

class A { };

class B : public A { };

int main()

{

 B b;

 A* p = &b; // "p" zeigt auf ein "A", und vielleicht auch auf mehr...

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 14 /

30

© Detlef Wilkening 2025 www.wilkening-online.de

 A& r = b; // "r" referenziert ein "A", und vielleicht auch mehr...

}

Und genau das gleiche passiert hier: Die Referenz-Variable sagt mit ihrem statischen Typ

„A“ das sie ein Möbelstück referenziert (darauf zeigt), obwohl sie doch in Wirklichkeit einen

Stuhl (ein Objekt vom Typ „B“) referenziert (darauf zeigt). Aber daran ist nichts Falsches und

unwahres - sie sagt nur nicht alles. Aber in vielen Kontexten reicht das. Wir sagen zu

unserem Besuch auch „Nimm dir einen Stuhl“, und lassen offen ob er sich in einen Sessel,

die gute Coach oder den normalen Holzstuhl setzen soll. Warum auch? Im Prinzip würde es

sogar reichen zu sagen „Nimm doch bitte Platz“.

17.3.5 Etwas komplexerer Fall

Manch einer bringt den Einwand, dass die Unterscheidung in statische und dynamische

Typen doch sinnlos ist – jeder sieht doch bei dem obigen Beispiel, dass „p“ und „r“ auf das B

Objekt „b“ verweisen. Bei dem obigen Beispiel ist dies richtig – es ist halt als einführendes

Beispiel sehr einfach. Schon bei einem nur etwas komplexeren Fall läßt sich der dynamische

Typ prinzipiell erst zur Laufzeit bestimmen – und hat damit seine Berechtigung.

class A { };

class B : public A { };

class C : public A { };

void fct(A& r) // Ginge auch mit Zeigern – genau der gleiche Effekt

{

 ... // Welchen Objekt-Typ referenziert "r" hier? Ein "A", "B" oder "C"?

}

int main()

{

 A a;

 B b;

 C c;

 fct(a);

 fct(b);

 fct(c);

}

Beim ersten Durchlauf von „fct“ referenziert „r“ ein A-Objekt, beim Zweiten ein „B“ Objekt und

beim Dritten ein „C“ Objekt. Der dynamische Typ von „r“ ändert sich hier zur Laufzeit und

seine Bestimmung macht daher auch immer erst während des konkreten Aufrufs Sinn. Er

läßt sich weder von uns noch vom Compier vorher bestimmen.

In diesem Beispiel können wir vorher noch sagen, bei welchem Durchlauf welcher

dynamische Typ vorkommt. Wenn wir die Funktions-Aufrufe aber von einem Zufallszahlen-

Generator oder Benutzer-Eingaben abhängig machen – dann ist selbst das vorher nicht

mehr möglich.

In realen Programmen können wir (und der Compiler) nur den statischen Typ exakt

bestimmen – über den dynamischen Typ kann man erst zur Laufzeit in der konkreten

Situation reden. Und genau hier kommt jetzt die Polymorphie ins Spiel…

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 15 /

30

© Detlef Wilkening 2025 www.wilkening-online.de

17.4 Polymorphie

17.4.1 Bisheriges Verhalten

Bisher werden Element-Funktions-Aufrufe des Compilers über den statischen Typ einer

Variablen aufgelöst.

class A

{

public:

 void f() const { cout << "A::f\n"; }

};

class B : public A

{

public:

 void f() const { cout << "B::f\n"; }

};

class C : public B

{

public:

 void f() const { cout << "C::f\n"; }

};

int main()

{

 C c;

 A& ra = c;

 B& rb = c;

 C& rc = c;

 ra.f(); // => A::f

 rb.f(); // => B::f

 rc.f(); // => C::f

}

Ausgabe

A::f

B::f

C::f

Dieses Verhalten kommt daher, dass der Compiler die Funktions-Aufrufe zum Compile-

Zeitpunkt fest verdrahtet (statische Bindung, frühe Bindung, static binding). Hierbei wird nicht

der echte dynamische Objekt-Typ benutzt, da der Compiler diesen nicht wissen kann. So

bindet der Compiler den Funktions-Aufruf fest über den statischen Typ, über den den der

Funktions-Aufruf vorgenommen wird. Wir haben das schon detailliert in den Kapiteln über die

Arbeitsweise von Compilern und Linkern kennen gelernt. Diese direkte Verdrahtung erklärt ja

auch die Performance von Funktions-Aufrufen in C++.

Anders ist dies bei virtuellen Funktionen.

17.4.2 Virtuelle Funktionen, bzw. Überschreiben von Funktionen II

Bei virtuellen Funktionen wird der Funktions-Aufruf erst zur Laufzeit festgelegt (dynamische

Bindung, späte Bindung, late binding). Hierbei wird zur Laufzeit quasi der echte dynamische

Typ des Objekts bestimmt und die Funktion dieses Typs aufgerufen.

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 16 /

30

© Detlef Wilkening 2025 www.wilkening-online.de

Um eine Element-Funktion zu einer virtuellen Funktion zu machen, muss das Schlüsselwort

„virtual“ vor die Element-Funktions-Deklaration geschrieben werden. Bei der Definition einer

virtuellen Funktion darf das Schlüsselwort virtual nicht auftauchen.

Syntax (Element-Funktions-Deklaration)

virtual rueckgabetyp funktionsname (parameterliste);

virtual rueckgabetyp funktionsname (parameterliste) const;

Bei den überschreibenden Funktionen kann das Schlüsselwort “virtual” weggelassen

werden, und wird es auch fast immer. Stattdessen wird das optionale Schlüsselwort

“override” hinter die Funktion eingefügt. Der Compiler überprüft dann, ob diese Funktion

wirklich eine Funktion der Basisklasse überschreibt.

class A

{

public:

 virtual void f() const { cout << "A\n"; }

};

class B : public A

{

public:

 void f() const override { cout << "B\n"; }

};

class C : public A

{

public:

 virtual void f() const override { cout << "C\n"; }

};

class D : public C

{

public:

 virtual void f() const override;

};

void D::f() const

{

 cout << "D\n";

}

class E : public A { };

class F : public E

{

public:

 virtual void f() const override { cout << "F\n"; }

};

int main()

{

 A a;

 B b;

 C c;

 D d;

 E e;

 F f;

 A* p;

 p=&a;

 p->f(); // p zeigt auf ein A-Objekt => A::f() -> Ausgabe A

 p=&b;

 p->f(); // p zeigt auf ein B-Objekt => B::f() -> Ausgabe B

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 17 /

30

© Detlef Wilkening 2025 www.wilkening-online.de

 p=&c;

 p->f(); // p zeigt auf ein C-Objekt => C::f() -> Ausgabe C

 p=&d;

 p->f(); // p zeigt auf ein D-Objekt => D::f() -> Ausgabe D

 p=&e;

 p->f(); // p zeigt auf ein E-Objekt => A::f() -> Ausgabe A

 // da E keine eigene Fkt. f() hat

 p=&f;

 p->f(); // p zeigt auf ein F-Objekt => F::f() -> Ausgabe F

}

Ausgabe

A

B

C

D

A

F

Eine Funktion ist ab der Klasse in der Vererbungs-Hierarchie virtuell, wo sie in der

Klassendefinition zum ersten Mal mit virtual deklariert wurde. Wird in den weiteren

abgeleiteten Klassen die virtual Deklaration weggelassen, so ist die Funktion trotzdem

weiterhin virtuell.

Achtung – nur Element-Funktionen können virtuell sein und überschrieben werden. Weder

Klassen-Funktionen noch freie Funktionen können virtuell sein, da sie keinen Objekt-Bezug

haben, über den die Funktions-Auswahl („Funktions-Dispatch“) zur Laufzeit möglich ist.

17.4.3 Diskussion

Mit Polymorphie ist gemeint, dass eine Funktion vielgestaltig ist, d. h. in Abhängigkeit vom

Kontext unterschiedlich (angepasst) reagiert. Genau genommen reagiert natürlich nicht eine

Funktion unterschiedlich, sondern es werden unterschiedliche Funktionen aufgerufen, ohne

dass sich der Entwickler um die echten Objekt-Typen und deren verschiedene Funktionen-

Implementierungen kümmern muss. Dies ermöglicht es ihm, ähnliche Objekte1 gleich zu

behandeln, ohne Details kennen zu müssen (z.B. welche Klassen es gibt, wie sie heissen,

wie sie zu behandeln sind, usw...).

Hinweis – im ersten Augenblick sieht Polymorphie nicht nach etwas Besonderem aus,

sondern eher nur nach einem kleinen Sprachgag – aber dies ist falsch. Es ist das

Schlüsselkonzept der Objektorientierung. Seine wahre Mächtigkeit erkennt man meist erst

in praktischen Einsätzen, von denen in den weiteren Kapiteln leider nur ein paar folgen

werden.

1 Ähnliche Objekte sind Objekte, die eine gemeinsame Basisklasse haben.

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 18 /

30

© Detlef Wilkening 2025 www.wilkening-online.de

17.5 Beispiel „Obstkorb“

17.5.1 Aufgabe

Nehmen wir an, sie wollen einen Obstkorb implementieren:

• Ein Obstkorb soll einfach mehrere Früchte verschiedener Obstsorten aufnehmen können.

Der Obstkorb übernimmt nicht den Besitz der Früchte.

• Der Obstkorb hat einen Namen.

• Außerdem soll der Obstkorb einen Konsolen Ausgabe folgender Form haben:

• Name vom Obstkorb

• Anzahl der Früchte im Obstkorb

• Darstellung alle Früchte – alphabetisch sortiert nach dem Namen der Frucht

• Jede Frucht hat einen Namen.

• Die Darstellung einer Frucht besteht aus Name und Obstsorte.

• Für den Anfang begnügen wir uns mit den zwei Obstsorten „Apfel“ und „Birne“.

Hier eine mögliche Beispiel-Ausgabe eines Obstkorbs mit 5 Früchten:

Gewünschte Ausgabe – wenn denn der Obstkorb fertig wäre...

Ich bin der Obstkorb "Geschenk" und enthalte 5 Fruechte:

- Bauchiger Adler (Birne)

- Dickes Schwein (Apfel)

- Fetter Kohl (Birne)

- Gruener Baum (Apfel)

- Saftiger Schmatz (Apfel)

17.5.2 Lösung

Fangen wir mal wieder mit der Main-Funktion an – wie sollte sie denn aussehen? Z.B. so:

int main()

{

 basket b("Geschenk");

 pear fr1("Bauchiger Adler");

 apple fr2("Dickes Schwein");

 pear fr3("Fetter Kohl");

 apple fr4("Gruener Baum");

 apple fr5("Saftiger Schmatz");

 b.insert(fr1);

 b.insert(fr2);

 b.insert(fr3);

 b.insert(fr4);

 b.insert(fr5);

 b.print();

}

Hiermit ist klar, dass wir eine Klasse „basket“ für den Obstkorb brauchen:

class basket

{

public:

 basket(const string& name);

 void insert(const apple&);

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 19 /

30

© Detlef Wilkening 2025 www.wilkening-online.de

 void insert(const pear&);

 void print() const;

};

Implementieren wir die Klasse schnell:

• für den Namen brauchen wir einen String

class basket

{

public:

 basket(const string& name) : name_(name) {}

 ...

private:

 string name_;

};

• Und für die Früchte einfach einen Vektor.

class basket

{

 ...

private:

 string name_;

 vector<???> fruits_;

};

Aber einen Vektor für was? Wenn er Äpfel aufnehmen kann, dann passen keine Birnen

hinein. Und kann er Birnen aufnehmen, dann bleiben die Äpfel außen vor.

Eine Möglichkeit wäre die Verwendung zweier Vektoren – einen für Äpfel, und den anderen

für Birnen. Aber das wird kompliziert, und bei weiteren Obstsorten wird das immer

furchtbarer. Eine andere Lösung wäre sicher besser...

Nutzen wir Vererbung und Polymorphie. Sowohl Äpfel als auch Birnen sind Obstsorten („ist-

ein“ Beziehung) – also erzeugen wir eine Basis-Klasse „fruit“ und abgeleitete Klassen „apple“

und „pear“, die mit Namen („std::string“) umgehen können.

class fruit

{

public:

 fruit(const string& name) : name_(name) {}

private:

 string name_;

};

class apple : public fruit

{

public:

 apple(const string& name) : fruit(name) {}

};

class pear : public fruit

{

public:

 pear(const string& name) : fruit(name) {}

};

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 20 /

30

© Detlef Wilkening 2025 www.wilkening-online.de

Jetzt können wir Äpfel und Birnen (und später auch alle anderen von „fruit“ abgeleiteten

Obstsorten) gemeinsam behandeln. Implementieren können wir den Obstkorb jetzt mit einem

Vektor für „const-fruit-Zeigern“. Machen sie sich klar, dass wir hier Zeiger benötigen:

• „fruit“ Objekte gehen nicht, da beim Einfügen in den Container aus z.B. einem Apfel eine

Frucht werden würde – ohne Informationen über den Apfel.

• Das eigentliche Obst-Objekt wird nur dann nicht angetastet, wenn wir mit Zeigern oder

Referenzen arbeiten. Aber Referenzen können wir nicht nehmen, da Container keine

Referenzen aufnehmen können. Also bleiben nur Zeiger übrig.

• Und const-Zeiger, da wir die Früchte nicht verändern wollen.

class basket

{

public:

 basket(const string& name) : name_(name) {}

 void insert(const apple&);

 void insert(const pear&);

 void print() const;

private:

 string name_;

 vector<const fruit*> fruits_;

};

Mit der Basis-Klasse „fruit“ kann die Klasse „basket“ noch mehr vereinfacht werden, da sie

nun nur noch eine Insert-Funktion benötigt – typisiert auf „const fruit&“. Diese läßt sich jetzt

auch direkt inline implementieren:

class basket

{

public:

 ...

 void insert(const fruit& fr) { fruits_.push_back(&fr); }

 ...

private:

 string name_;

 vector<const fruit*> fruits_;

};

Bleibt noch die Ausgabe offen – beginnen wir mit dem Obstkorb:

void basket::print() const

{

 cout << "Ich bin der Obstkorb \"" << name_ << "\" und enthalte "

 << fruits_.size() << " Fruechte:\n";

 for (const fruit* p : fruits_)

 {

 ???

 }

}

In der Schleife könnte man jetzt für die jeweiligen Obstsorten eine entsprechende Ausgabe

einbauen. Aber mit jeder Veränderung einer Obstsorte (inkl. Löschen bzw. Hinzufügen)

müßte die For-Schleife angepasst werden – keine schöne Vorstellung. Statt dessen lassen

wir sich jedes Objekt selber ausgeben, und dank Polymorphie ist das ganz einfach: Wir

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 21 /

30

© Detlef Wilkening 2025 www.wilkening-online.de

definieren einfach eine virtuelle Print-Funktion in der Basis-Klasse „fruit“, und überschreiben

sie angepasst in den abgeleiteten Klassen „apple“ und „pear“ – z.B. so:

class fruit

{

public:

 fruit(const string& name) : name_(name) {}

 virtual void print() const {}

protected:

 const string& name() const { return name_; }

private:

 string name_;

};

class apple : public fruit

{

public:

 apple(const string& name) : fruit(name) {}

 void print() const override { cout << name() << " (Apfel)"; }

};

class pear : public fruit

{

public:

 pear(const string& name) : fruit(name) {}

 void print() const override { cout << name() << " (Birne)"; }

};

Und die Print-Funktion in „basket“ sieht jetzt so aus:

void basket::print() const

{

 cout << "Ich bin der Obstkorb \"" << name_ << "\" und enthalte "

 << fruits_.size() << " Fruechte:\n";

 for (const fruit* p : fruits_)

 {

 cout << "- ";

 p->print();

 cout << '\n';

 }

}

Und wo wir schon mal dabei sind, eine schöne Lösung zu basteln... äh, zu entwickeln –

machen wir es doch ordentlich, und liefern dabei gleich noch ein Beispiel für eine virtuelle

Indirektion für eine freie Operator-Funktion mit.

Wir wollen die Schleife in der Print-Funktion von „basket“ schöner machen, d.h. den

Ausgabe-Operator überladen. Da der erste Operand des Ausgabe-Operators ein

„std::ostream“ ist, müssen wir eine freie Operator-Funktion nehmen. Freie Funktionen

können nicht virtuell sein – das können nur Element-Funktionen (Kap. 17.4.2). Also müssen

wir eine Indirektion nehmen.

void basket::print() const

{

 cout << "Ich bin der Obstkorb \"" << name_ << "\" und enthalte "

 << fruits_.size() << " Fruechte:\n";

 for (const fruit* p : fruits_)

 {

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 22 /

30

© Detlef Wilkening 2025 www.wilkening-online.de

 cout << "- " << *p << '\n';

 }

}

class fruit

{

public:

 fruit(const string& name) : name_(name) {}

 virtual ostream& print(ostream& out) const { return out; }

protected:

 const string& name() const { return name_; }

private:

 string name_;

};

inline ostream& operator<<(ostream& out, const fruit& fr)

{

 return fr.print(out);

}

class apple : public fruit

{

public:

 apple(const string& name) : fruit(name) {}

 ostream& print(ostream& out) const override { return out << name() << " (Apfel)"; }

};

class pear : public fruit

{

public:

 pear(const string& name) : fruit(name) {}

 ostream& print(ostream& out) const override { return out << name() << " (Birne)"; }

};

17.5.3 Zusammenfassung

Und hier nochmal die gesamte Lösung in einem:

#include <string>

#include <vector>

#include <ostream>

#include <iostream>

using namespace std;

class fruit

{

public:

 fruit(const string& name) : name_(name) {}

 virtual ostream& print(ostream& out) const { return out; }

protected:

 const string& name() const { return name_; }

private:

 string name_;

};

inline ostream& operator<<(ostream& out, const fruit& fr)

{

 return fr.print(out);

}

class apple : public fruit

{

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 23 /

30

© Detlef Wilkening 2025 www.wilkening-online.de

public:

 apple(const string& name) : fruit(name) {}

 ostream& print(ostream& out) const override { return out << name() << " (Apfel)"; }

};

class pear : public fruit

{

public:

 pear(const string& name) : fruit(name) {}

 ostream& print(ostream& out) const override { return out << name() << " (Birne)"; }

};

class basket

{

public:

 basket(const string& name) : name_(name) {}

 void insert(const fruit& fr) { fruits_.push_back(&fr); }

 void print() const;

private:

 string name_;

 vector<const fruit*> fruits_;

};

void basket::print() const

{

 cout << "Ich bin der Obstkorb \"" << name_ << "\" und enthalte "

 << fruits_.size() << " Fruechte:\n";

 for (const fruit* p : fruits_)

 {

 cout << "- " << *p << '\n';

 }

}

int main()

{

 basket b("Geschenk");

 pear fr1("Bauchiger Adler");

 apple fr2("Dickes Schwein");

 pear fr3("Fetter Kohl");

 apple fr4("Gruener Baum");

 apple fr5("Saftiger Schmatz");

 b.insert(fr1);

 b.insert(fr2);

 b.insert(fr3);

 b.insert(fr4);

 b.insert(fr5);

 b.print();

}

17.5.4 Diskussion

Betrachten Sie mal die Abhängikeiten (Kennen-Beziehungen) der Klassen untereinander,

und ihre Konsequenzen bzgl. Wiederverwendung und Veränderbarkeit:

• Die Klasse „fruit“ als sehr einfach Klasse ist vollkommen entkoppelt von ihrer Benutzung

(hier dem Obstkorb) und ihren konkreten Ausprägungen (hier Apfel und Banane). Daher

sie ist von nichts und niemandem abhängig. Damit ist diese Klasse problemlos

wiederverwendbar. Sie stellt einfach eine allgemeine Sicht auf die Abstraktion Obst dar.

• Da die Klasse Obstkorb nur die Klasse Obst kennt, ist hier eine kleine Kopplung

vorhanden. Trotzdem kann der Obstkorb mit beliebigen Obstsorten umgehen, ohne diese

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 24 /

30

© Detlef Wilkening 2025 www.wilkening-online.de

kennen zu müssen. Damit können Obstsorten entfernt, hinzugefügt oder ihr Verhalten

verändert werden, ohne dass der Obstkorb umprogrammiert werden muss.

• Das Standard-Verhalten von Obst kann in der Basis-Klasse einmal gesammelt werden,

kann aber in konkreten Obstsorten verändert werden.

• Alles apfel-spezifische ist in der Klasse Apfel zusammengefasst. Diese Klasse

implementiert nur die Klasse Obst - die einzige Kopplung.

• Um das Beispiel um weitere Obstsorten zu erweitern, muss nur eine neue Obstsorten-

Klasse von Obst abgeleitet werden und in das Haupt-Programm eingefügt werden. Das

restliche Programm ist vollkommen von dieser Änderung entkoppelt und muss nicht

verändert werden. Analoges gilt beim Entfernen oder Verändern von Obstsorten.

Mit Polymorphie ist es jetzt noch viel viel wichtiger geworden, die Implementierungen auf ihre

Abstraktions-Ebenen zu beschränken und die Aufgaben zu delegieren. War es vorher schon

sehr sehr schlechter Stil, Objekt-Zustände abzufragen und selber damit zu arbeiten, so wird

diese Vorgehensweise jetzt essentiell.

17.6 Destruktoren

Destruktoren sind normale Element-Funktionen:

class A

{

public:

 ~A() { cout << "- De. A\n"; }

};

class B : public A

{

public:

 ~B() { cout << "- De. B\n"; }

};

int main()

{

 cout << "Zeiger vom Typ B*\n";

 B* pb = new B();

 delete pb;

 cout << "Zeiger vom Typ A*\n";

 A* pa = new B();

 delete pa; // Achtung - undefiniertes Verhalten

}

Ausgabe

Zeiger vom Typ B*

- De. B

- De. A

Zeiger vom Typ A*

- De. A

Wie man an der Ausgabe des Beispiels sieht, wird daher bei Objekten die über Basis-

Klassen-Zeiger gelöscht werden, nur der Destruktor der Basisklasse aufgerufen. Ein

Destruktor ist halt eine normale Element-Funktion, und wird daher defaultmäßig statisch

gebunden, d.h. der Destruktor-Aufruf wird über den statischen Typ festgelegt. Hierbei

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 25 /

30

© Detlef Wilkening 2025 www.wilkening-online.de

können aber auch noch andere Fehler auftreten, die unser Beispiel nicht zeigt. Letztlich ist

das Löschen über einen Basisklassen-Zeiger mit einem nicht-virtuellen Destruktor nicht

erlaubt und erzeugt „undefined behaviour“.

Die Lösung besteht natürlich darin, den Destruktor virtuell zu machen. Da der implizite

Destruktor nicht virtuell ist, müssen wir in diesem Fall immer selber einen erzeugen - und sei

er auch leer. Im einfachsten Fall wird in die Basis-Klasse ein leerer virtueller Destruktor

eingefügt. Dann wird auch der Destruktor dynamisch gebunden, und damit immer der

Destruktor der abgeleiteten Klasse aufgerufen, und außerdem funktioniert die

Speicherfreigabe korrekt.

class A

{

public:

 virtual ~A() {}

};

class B : public A

{

public:

 virtual ~B() { cout << "- De. B\n"; }

};

int main()

{

 cout << "Zeiger vom Typ B*\n";

 B* pb = new B();

 delete pb;

 cout << "Zeiger vom Typ A*\n";

 A* pa = new B();

 delete pa;

}

Ausgabe

Zeiger vom Typ B*

- De. B

Zeiger vom Typ A*

- De. B

Regeln

• Da Sie nie wissen können, wie Ihre Klasse mal benutzt wird, sollten Sie sich nur von

Klassen ableiten, die einen virtuellen bzw. protected Destruktor haben.

• Umgekehrt sollten Sie immer, wenn Sie eine Basis-Klasse entwickeln, einen virtuellen

Destruktor implementieren – auch wenn dieser leer ist.

• Sie sollten jetzt nicht übertreiben und bloß nicht jeder Klasse einen virtuellen Destruktor

geben. Sobald eine Klasse mindestens eine virtuelle Funktion hat, wird sie größer, ihre

Benutzung wird unter Umständen langsamer, und falls sie vorher ein POD war so würde

sich das nun ändern.

Hinweis – im Prinzip könnte man auf den virtuellen Destruktor verzichten, wenn man sicher

sein könnte, dass Objekte nie dynamisch über einen Basis-Klassen-Zeiger gelöscht werden.

In der STL gibt es einige solcher Fälle, bei denen die Basis-Klassen nur z.B. Typedefs zur

Verfügung stellen, und ansonsten keine semantische Bedeutung haben. Aber dies sind

Ausnahmen – halten Sie sich lieber an obige Regeln, dann sind sie auf der sicheren Seite.

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 26 /

30

© Detlef Wilkening 2025 www.wilkening-online.de

17.7 Abstrakte Basis-Klassen

Wir erinnern uns an unseren Obstkorb mit vielen Früchten, die durch eine Basis-Klasse „fruit“

repräsentiert wurden. Nur gibt es kein „Obst“ Objekt an sich, sondern nur z. B. Bananen,

Äpfel, Birnen, usw. Darum sollten sich von der Klasse „fruit“ eigentlich keine Objekte

erzeugen lassen, da sie keinen Sinn machen.

Außerdem hat man häufig das Problem, dass man nicht weiß, wie man Funktionen in der

Basis-Klasse implementieren soll. Die Print-Funktion z.B. in „fruit“ wurde leer gelassen, da

jede abgeleitete Klasse sie überschreiben soll, und die Basis-Klasse keine gute Default-

Implementierung anbieten kann.

Mit unseren aktuellen Kenntnissen können wir das Erzeugen von Basis-Klassen-Objekten

schon sehr einschränken – ist ihnen klar wie? Machen sie doch einfach den oder die

Konstruktoren „protected“, dann können sie nur aus der Klasse selber, aus abgeleiteten

Klassen, oder von Friends aus aufgerufen werden.

class A

{

public:

 virtual ~A() {}

protected:

 A() {}

};

Aber diese Lösung hat halt Lücken, und sie adressiert nicht das Problem der unmöglichen

Funktions-Implementierungen. Aber C++ hat ein Sprachmittel für beide Probleme:

Abstrakte Klassen mit rein virtuellen Funktionen

Abstrakte Klassen sind Klassen, von denen keine Objekte erzeugt werden können. Eine

Klasse ist dann abstrakt, wenn sie mindestens eine rein-virtuelle Funktion besitzt (auch

durch Vererbung).

Rein-virtuelle Funktionen sind normale virtuelle Funktionen, die in der Basis-Ebene (im

Normallfall) keine Implementierung haben und zwingend in den abgeleiteten Klassen

überschrieben werden müssen. Deklariert werden sie in der KlassenDefinition mit einem = 0.

class A

{

public:

 virtual void f() = 0;

};

A a; // Compiler-Fehler - von abstrakten Klassen kann kein Objekt erzeugt werden

class A

{

public:

 virtual void f() = 0;

};

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 27 /

30

© Detlef Wilkening 2025 www.wilkening-online.de

class B : public A { };

class C : public B

{

public:

 virtual void f() {}

};

A a; // Compiler-Fehler, da abstrakte Klasse

B b; // Compiler-Fehler, da abstrakte Klasse (durch Vererbung)

C c; // okay

Was für einen Sinn haben abstrakte Klassen?

• Sie verhindern, dass von diesen Klassen Objekte gebildet werden.

• Sie erzwingen, dass bestimmte Funktionen (die rein-virtuellen) überschrieben werden.

• Außerdem stellen sie ein allgemeines Interface für verschiedene Implementierungen dar.

Man bezeichnet Basis-Klassen, vor allem abstrakte Basis-Klassen – im Extrem solche mit

nur rein-virtuellen-Funktionen – gerne als Interface. Sie stellen eine allgemeine Sicht auf eine

Abstraktion dar (z.B. fruit für alle Obstsorten), und bilden quasi die Schnittstelle zu den

konkreten Klassen.

17.8 Dynamic-Cast

In sehr seltenen Fällen ist es nötig, einen Objekt-Zeiger oder eine Objekt-Referenz in der

Klassen-Hierarchie hinauf zu den abgeleiteten Klassen zu casten.

Dieser Cast ist – wie eigentlich alle Casts – nicht unproblematisch. Hier ist der Cast aber

besonders problematisch, denn es ist zur Compilezeit oft nicht bestimmbar, ob sich der

Quell-Ausdruck überhaupt in den Ziel-Typ umwandeln läßt.

class A

{

public:

 virtual ~A() {}

 virtual void f();

};

class B : public A {};

class C : public A

{

public:

 void g();

};

void fct(A* pa)

{

 pa->g(); // Wie kann ich daraus einen C-Zeiger machen?

 // Und was ist, wenn es kein Objekt vom Typ C ist, sondern z.B. ein B?

}

Mit dynamic_cast existiert in C++ ein Cast für Klassen-Hierarchien. Für ihn gilt:

• Quell- und Ziel-Typ müssen in einer gemeinsamen Klassen-Hierarchie liegen, oder der

Zieltyp muss ‘void*’ sein. Mit Quell-Typ ist der statische Typ des Quell-Ausdrucks

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 28 /

30

© Detlef Wilkening 2025 www.wilkening-online.de

gemeint.

• Der Quell-Typ muss polymorph sein, d.h. er muss mindestens eine virtuelle Funktion

enthalten.

• Der Ziel-Typ muss nicht polymorph sein.

• Ein Dynamic-Cast kann nur auf Zeiger und Referenz-Typen ausgeführt werden.

• Der Dynamic-Cast wird nur ausgeführt, wenn der Quell-Ausdruck dem Ziel-Typ entspricht.

• Die Konvertierung findet zur Laufzeit statt - sie ist daher langsamer als andere Casts.

• Ein Dynamic-Cast geht korrekt mit virtuellen Adressen bei Mehrfach-Vererbung um.

• Ein Dynamic-Cast kann keinen const Modifizierer entfernen.

Wird ein nicht korrekter Cast versucht, so wird:

• bei Zeigern ein Null-Zeiger zurückgegeben, und

• bei Referenzen eine std::bad_cast Exception geworfen.

// Klassen A, B und C wie oben

void f1(A* pa)

{

 cout << "> f1\n";

 if (C* pc = dynamic_cast<C*>(pa))

 {

 pc->g();

 }

 else

 {

 cout << " Null-Zeiger\n";

 }

}

void f2(A& ra)

{

 cout << "> f2\n";

 try

 {

 dynamic_cast<C&>(ra).g();

 }

 catch (const std::bad_cast& x)

 {

 cout << " Exception: " << x.what() << '\n';

 }

}

int main()

{

 A a;

 cout << "A\n";

 f1(&a);

 f2(a);

 B b;

 cout << "\nB\n";

 f1(&b);

 f2(b);

 C c;

 cout << "\nC\n";

 f1(&c);

 f2(c);

}

Ausgabe

A

> f1

 Null-Zeiger

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 29 /

30

© Detlef Wilkening 2025 www.wilkening-online.de

> f2

 Exception: Bad dynamic_cast!

B

> f1

 Null-Zeiger

> f2

 Exception: Bad dynamic_cast!

C

> f1

 C::g()

> f2

 C::g()

Bemerkung – auch mit den Sicherheiten von „dynamic_cast“ ist ein Cast ein Cast und bleibt

ein Cast. Auch wenn er relativ schön und sicher ist. Cast’s sind und bleiben ein Werkzeug für

absolute Ausnahme-Situationen. Im Normallfall benötigen sie bei einem ‘vernünftigen’

Design keine Cast’s, auch kein „dynamic_cast“.

17.9 Vererbung & Polymorphie

17.9.1 Semantik

Über die Semantik dieser neuen Sprachmittel lassen sich folgende Faustregeln aufstellen:

• Eine gemeinsame Basis-Klasse bedeutet gemeinsame Aufgaben.

• Öffentliche Erblichkeit bedeutet "ist-ein".

• Eine rein-virtuelle Funktion bedeutet, dass die Schnittstelle der Funktion geerbt wird.

• Eine virtuelle Funktion bedeutet, dass die Schnittstelle und eine Standardimplementierung

geerbt werden.

• Eine nicht-virtuelle Funktion bedeutet, dass die Schnittstelle inkl. obligatorischer

Funktionen geerbt wird.

• Oberbegriffe (Basis-Klassen) sind ein Hilfsmittel zur Abstraktion und bilden ein

gemeinsames Interface aller abgeleiteten Klassen.

• Polymorphie bedeutet, dass eine Funktion, je nach Objekt, angepasst reagiert.

17.9.2 Begriff „Polymorphie“

Mit Vererbung und virtuellen Funktionen wird in C++ Polymorphie (Vielgestaltigkeit) realisiert.

Mit Polymorphie ist gemeint, dass eine Funktion vielgestaltig ist, d. h. in Abhängigkeit vom

Kontext unterschiedlich (angepasst) reagiert. Genau genommen reagiert nicht eine Funktion

unterschiedlich, sondern es werden unterschiedliche Funktionen aufgerufen.

Der Begriff Polymorphie wird in der Literatur sehr unterschiedlich benutzt:

1. Einige bezeichnen schon jeden Aufruf einer Element-Funktion als Polymorphie, da jede

Klasse die gleichen Funktions-Namen enthalten kann, und daher in Abhängigkeit vom

Objektbezug unterschiedliche Funktionen aufgerufen werden.

Objektorientiertes Programmieren in C++ (WS2025/26) – Teil 10 – Version 1 Seite 30 /

30

© Detlef Wilkening 2025 www.wilkening-online.de

2. Manche bezeichnen Überladen als Polymorphie, da hier unterschiedliche Funktionen in

Abhängigkeit von den Parametern aufgerufen werden.

3. Ich beschränke mich hier bei dem Begriff Polymorphie (im Einklang mit dem Grossteil der

OO Literatur) auf die Wirkungsweise von dynamisch gebundenen (in C++ also virtuellen)

Funktionen. Manchmal wird dies in C++ auch dynamische Polymorphie genannt.

17.9.3 Schlüsselkonzepte

Mit Vererbung und vor allem Polymorphie haben wir die Schlüsselkonzepte der

objektorientierten Programmierung kennengelernt. Immer, wenn sie eine Menge an

ähnlichen Dingen, verwalten, bearbeiten, oder sonstwas müssen, bietet sich Polymorphie als

eine elegante Lösung an.

Ob Sie nun

• ein Spiel mit unterschiedlichen Spielern entwickeln, die auf unterschiedlichen Planeten

leben, in dem unterschiedliche Raumschiffe mit unterschiedlichen Waffen vorkommen,...

• oder ein Programm zur Kontoführung unterschiedlicher Konten,

• oder, oder, oder....

Immer bieten sich Vererbung und Polymorphie als einfache, elegante und leistungsfähige

Designmittel an. Daher finden sie sich auch immer wieder als zentrale Konzepte in Pattern,

Frameworks, Bibliotheken und Programmen wieder.

Wenn Sie es schaffen, dass eine Programm-Struktur (die Architektur) nur auf abstrakten

Klassen beruht, können Sie die konkreten Implementierungen verändern, ersetzen, löschen,

ergänzen und umstrukturieren, ohne dass Sie die Programm-Struktur nur ein einziges Mal

ändern müssen. Damit hätten Sie einen sehr hohen Grad an Erweiterbarkeit und

Änderbarkeit erreicht.

